Advertisement

A Deterministic Worst-Case Message Complexity Optimal Solution for Resource Discovery

  • Sebastian Kniesburges
  • Andreas Koutsopoulos
  • Christian Scheideler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8179)

Abstract

We consider the problem of resource discovery in distributed systems. In particular we give an algorithm, such that each node in a network discovers the address of any other node in the network. We model the knowledge of the nodes as a virtual overlay network given by a directed graph such that complete knowledge of all nodes corresponds to a complete graph in the overlay network. Although there are several solutions for resource discovery, our solution is the first that achieves worst-case optimal work for each node, i.e. the number of addresses (\(\mathcal O(n)\)) or bits (\(\mathcal O(n\log n)\)) a node receives or sends coincides with the lower bound, while ensuring only a linear runtime (\(\mathcal O(n)\)) on the number of rounds.

Keywords

distributed algorithms resource discovery self-stabilization clique network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aspnes, J., Shah, G.: Skip graphs. In: SODA, pp. 384–393 (2003)Google Scholar
  2. 2.
    Awerbuch, B., Scheideler, C.: The hyperring: a low-congestion deterministic data structure for distributed environments. In: SODA 2004, pp. 318–327 (2004)Google Scholar
  3. 3.
    Berns, A., Ghosh, S., Pemmaraju, S.V.: Brief announcement: a framework for building self-stabilizing overlay networks. In: PODC 2010, pp. 398–399 (2010)Google Scholar
  4. 4.
    Blin, L., Dolev, S., Potop-Butucaru, M.G., Rovedakis, S.: Fast self-stabilizing minimum spanning tree construction. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 480–494. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Blin, L., Maria, G.P.-B., Rovedakis, S.: Self-stabilizing minimum degree spanning tree within one from the optimal degree. J. Parallel Distrib. Comput. 71(3), 438–449 (2011)CrossRefzbMATHGoogle Scholar
  6. 6.
    Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the presence of faults (extended abstract). In: FOCS, pp. 383–395 (1985)Google Scholar
  7. 7.
    Curt Cramer and Thomas Fuhrmann. Self-stabilizing ring networks on connected graphs. Technical Report 2005-5, University of Karlsruhe, TH (2005)Google Scholar
  8. 8.
    Edsger, W.D.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17, 643–644 (1974)CrossRefzbMATHGoogle Scholar
  9. 9.
    Dolev, S., Tzachar, N.: Empire of colonies: Self-stabilizing and self-organizing distributed algorithm. Theor. Comput. Sci. 410(6-7), 514–532 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hérault, T., Lemarinier, P., Peres, O., Pilard, L., Beauquier, J.: A model for large scale self-stabilization. In: IPDPS, pp. 1–10 (2007)Google Scholar
  11. 11.
    Jacob, R., Richa, A.W., Scheideler, C., Schmid, S., Täubig, H.: A distributed polylogarithmic time algorithm for self-stabilizing skip graphs. In: PODC, pp. 131–140 (2009)Google Scholar
  12. 12.
    Jacob, R., Ritscher, S., Scheideler, C., Schmid, S.: A self-stabilizing and local delaunay graph construction. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 771–780. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: a scalable and dynamic emulation of the butterfly. In: PODC 2002, pp. 183–192 (2002)Google Scholar
  14. 14.
    Myasnikov, A.G., Shpilrain, V., Ushakov, A.: Group-based cryptography. In: Advanced Courses in Mathematics, Birkhäuser Verlag, CRM Barcelona (2008)Google Scholar
  15. 15.
    Naor, M., Wieder, U.: Novel architectures for p2p applications: The continuous-discrete approach. ACM Transactions on Algorithms 3(3) (2007)Google Scholar
  16. 16.
    Onus, M., Richa, A.W., Scheideler, C.: Linearization: Locally self-stabilizing sorting in graphs. In: ALENEX (2007)Google Scholar
  17. 17.
    Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of faults. J. ACM 27(2), 228–234 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable network. In: SIGCOMM 2001, pp. 161–172 (2001)Google Scholar
  19. 19.
    Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Shaker, A., Reeves, D.S.: Self-stabilizing structured ring topology p2p systems. In: Peer-to-Peer Computing, pp. 39–46 (2005)Google Scholar
  21. 21.
    Haeupler, B., Pandurangan, G., Peleg, D., Rajaraman, R., Sun, Z.: Discovery through Gossip. In: SPAA (2011)Google Scholar
  22. 22.
    Stoica, I., Morris, R., Liben-nowell, D., Karger, D., Frans, M., Dabek, K.F., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for internet applications. In: SIGCOMM, pp. 149–160 (2001)Google Scholar
  23. 23.
    Harchol-Balter, M., Leighton, T., Lewin, D.: Resource discovery in distributed networks. In: PODC 1999, pp. 229–237 (1999)Google Scholar
  24. 24.
    Kutten, S., Peleg, D., Vishkin Deterministic, U.: resource discovery in distributed networks. In: SPAA 2001, pp. 77–83 (2001)Google Scholar
  25. 25.
    Konwar, K.M., Kowalski, D., Shvartsman, A.A.: Node discovery in networks In. J. Parallel Distrib. Comput. 69(4), 337–348 (2009)CrossRefGoogle Scholar
  26. 26.
    Kniesburge, S., Koutsopoulos, A., Scheideler, C.: A Deterministic Worst-Case Message Complexity Optimal Solution for Resource Discovery (Pre-Print) In: arXiv:1306.1692 (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sebastian Kniesburges
    • 1
  • Andreas Koutsopoulos
    • 1
  • Christian Scheideler
    • 1
  1. 1.Department of Computer ScienceUniversity of PaderbornGermany

Personalised recommendations