Lifting and Transfer: A Modular Design for Quotients in Isabelle/HOL

  • Brian Huffman
  • Ondřej Kunčar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8307)


Quotients, subtypes, and other forms of type abstraction are ubiquitous in formal reasoning with higher-order logic. Typically, users want to build a library of operations and theorems about an abstract type, but they want to write definitions and proofs in terms of a more concrete representation type, or “raw” type. Earlier work on the Isabelle Quotient package has yielded great progress in automation, but it still has many technical limitations.

We present an improved, modular design centered around two new packages: the Transfer package for proving theorems, and the Lifting package for defining constants. Our new design is simpler, applicable in more situations, and has more user-friendly automation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coen, C.S.: A Semi-reflexive Tactic for (Sub-)Equational Reasoning. In: Filliâtre, J.-C., Paulin-Mohring, C., Werner, B. (eds.) TYPES 2004. LNCS, vol. 3839, pp. 98–114. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data Refinement in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 100–115. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Harrison, J.: Theorem Proving with the Real Numbers. Springer (1998)Google Scholar
  4. 4.
    Homeier, P.V.: A Design Structure for Higher Order Quotients. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 130–146. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Kaliszyk, C., Urban, C.: Quotients revisited for Isabelle/HOL. In: Proc. of the 26th ACM Symposium on Applied Computing (SAC 2011), pp. 1639–1644. ACM (2011)Google Scholar
  6. 6.
    Krauss, A.: Simplifying Automated Data Refinement via Quotients. Tech. rep., TU München (2011),
  7. 7.
    Lammich, P.: Automatic data refinement. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 84–99. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Magaud, N.: Changing data representation within the Coq system. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 87–102. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Mitchell, J.C.: Representation Independence and Data Abstraction. In: POPL, pp. 263–276. ACM Press (January 1986)Google Scholar
  10. 10.
    Paulson, L.C.: Defining functions on equivalence classes. ACM Trans. Comput. Logic 7(4), 658–675 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Reynolds, J.C.: Types, Abstraction and Parametric Polymorphism. In: IFIP Congress, pp. 513–523 (1983)Google Scholar
  12. 12.
    Slotosch, O.: Higher Order Quotients and their Implementation in Isabelle HOL. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 291–306. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  13. 13.
    Sozeau, M.: A New Look at Generalized Rewriting in Type Theory. In: 1st Coq Workshop Proceedings (2009)Google Scholar
  14. 14.
    Wadler, P.: Theorems for free! In: Functional Programming Languages and Computer Architecture, pp. 347–359. ACM Press (1989)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Brian Huffman
    • 1
  • Ondřej Kunčar
    • 2
  1. 1.Galois, Inc.USA
  2. 2.Technische Universität MünchenGermany

Personalised recommendations