Brzozowski’s and Up-To Algorithms for Must Testing

  • Filippo Bonchi
  • Georgiana Caltais
  • Damien Pous
  • Alexandra Silva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8301)


Checking language equivalence (or inclusion) of finite automata is a classical problem in Computer Science, which has recently received a renewed interest and found novel and more effective solutions, such as approaches based on antichains or bisimulations up-to. Several notions of equivalence (or preorder) have been proposed for the analysis of concurrent systems. Usually, the problem of checking these equivalences is reduced to checking bisimilarity. In this paper, we take a different approach and propose to adapt algorithms for language equivalence to check one prime equivalence in concurrency theory, must testing semantics. To achieve this transfer of technology from language to must semantics, we take a coalgebraic outlook at the problem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdulla, P.A., Chen, Y.-F., Holík, L., Mayr, R., Vojnar, T.: When simulation meets antichains. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 158–174. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Bezhanishvili, N., Kupke, C., Panangaden, P.: Minimization via duality. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 191–205. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Bonchi, F., Bonsangue, M., Caltais, G., Rutten, J., Silva, A.: Final semantics for decorated traces. Elect. Not. in Theor. Comput. Sci. 286, 73–86 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bonchi, F., Bonsangue, M.M., Rutten, J.J.M.M., Silva, A.: Brzozowski’s algorithm (Co)Algebraically. In: Constable, R.L., Silva, A. (eds.) Kozen Festschrift. LNCS, vol. 7230, pp. 12–23. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Bonchi, F., Caltais, G., Pous, D., Silva, A.: Brzozowski’s and up-to algorithms for must testing (full version),
  6. 6.
    Bonchi, F., Caltais, G., Pous, D., Silva, A.: Web appendix of this paper, with implementation of the algorithms (July 2013),
  7. 7.
    Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congruence. In: POPL, pp. 457–468. ACM (2013)Google Scholar
  8. 8.
    Boreale, M., Gadducci, F.: Processes as formal power series: a coinductive approach to denotational semantics. TCS 360(1), 440–458 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for definite events. Mathematical Theory of Automata 12(6), 529–561 (1962)Google Scholar
  10. 10.
    Calzolai, F., De Nicola, R., Loreti, M., Tiezzi, F.: TAPAs: A tool for the analysis of process algebras. In: Jensen, K., van der Aalst, W.M.P., Billington, J. (eds.) ToPNoC I. LNCS, vol. 5100, pp. 54–70. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Cancila, D., Honsell, F., Lenisa, M.: Generalized coiteration schemata. Elect. Not. in Theor. Comput. Sci. 82(1) (2003)Google Scholar
  12. 12.
    Cleaveland, R., Hennessy, M.: Testing equivalence as a bisimulation equivalence. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 11–23. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  13. 13.
    Cleaveland, R., Parrow, J., Steffen, B.: The Concurrency Workbench: A semantics-based tool for the verification of concurrent systems. TOPLAS 15(1), 36–72 (1993)CrossRefGoogle Scholar
  14. 14.
    De Nicola, R., Hennessy, M.: Testing equivalences for processes. TCS 34, 83–133 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.: Real-reward testing for probabilistic processes. In: QAPL. EPTCS, vol. 57, pp. 61–73 (2011)Google Scholar
  16. 16.
    Hopcroft, J.E.: An n log n algorithm for minimizing in a finite automaton. In: Proc. Int. Symp. of Theory of Machines and Computations, pp. 189–196. Academic Press (1971)Google Scholar
  17. 17.
    Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three problems of equivalence. In: PODC 1983, pp. 228–240. ACM, New York (1983)Google Scholar
  18. 18.
    Klin, B.: A coalgebraic approach to process equivalence and a coinduction principle for traces. Elect. Not. in Theor. Comput. Sci. 106, 201–218 (2004)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Klin, B.: Bialgebras for structural operational semantics: An introduction. TCS 412(38), 5043–5069 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lenisa, M.: From set-theoretic coinduction to coalgebraic coinduction: some results, some problems. Elect. Not. in Theor. Comput. Sci. 19, 2–22 (1999)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Milner, R.: Communication and Concurrency. Prentice Hall (1989)Google Scholar
  22. 22.
    Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–989 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Parrow, J., Sjödin, P.: Designing a multiway synchronization protocol. Computer Communications 19(14), 1151–1160 (1996)CrossRefGoogle Scholar
  24. 24.
    Rensink, A., Vogler, W.: Fair testing. Inf. Comput. 205(2), 125–198 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Rot, J., Bonsangue, M., Rutten, J.: Coalgebraic bisimulation-up-to. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 369–381. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  26. 26.
    Rutten, J.: Universal coalgebra: a theory of systems. TCS 249(1), 3–80 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Sangiorgi, D.: On the bisimulation proof method. Math. Struc. in CS 8, 447–479 (1998)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Silva, A., Bonchi, F., Bonsangue, M., Rutten, J.: Generalizing the powerset construction, coalgebraically. In: Proc. FSTTCS. LIPIcs, vol. 8, pp. 272–283 (2010)Google Scholar
  29. 29.
    Tabakov, D., Vardi, M.: Experimental evaluation of classical automata constructions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 396–411. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  30. 30.
    van Glabbeek, R.: The linear time - branching time spectrum I. The semantics of concrete, sequential processes. In: Handbook of Process Algebra, pp. 3–99. Elsevier (2001)Google Scholar
  31. 31.
    Watson, B.W.: Taxonomies and Toolkits of Regular Language Algorithms. PhD thesis, Eindhoven University of Technology, the Netherlands (1995)Google Scholar
  32. 32.
    De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: A new algorithm for checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 17–30. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Filippo Bonchi
    • 1
  • Georgiana Caltais
    • 2
  • Damien Pous
    • 1
  • Alexandra Silva
    • 3
  1. 1.INRIA, UCBLENS Lyon, U. de Lyon, CNRSFrance
  2. 2.Reykjavik UniversityIceland
  3. 3.Radboud University NijmegenNetherlands

Personalised recommendations