A Spatial Preferential Attachment Model with Local Clustering

  • Emmanuel Jacob
  • Peter Mörters
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8305)


A class of growing networks is introduced in which new nodes are given a spatial position and are connected to existing nodes with a probability mechanism favouring short distances and high degrees. The competition of preferential attachment and spatial clustering gives this model a range of interesting properties. Most notably, empirical degree distributions converge to a limit law, which can be a power law with any exponent τ > 2, and the average clustering coefficient converges to a positive limit. Our main tool to show these and other results is a weak law of large numbers in the spirit of Penrose and Yukich, which can be applied thanks to a novel rescaling idea. We also conjecture that the networks have a robust giant component if τ is sufficiently small.


Scale-free network Barabasi-Albert model preferential attachment dynamical random graph geometric random graph power law degree distribution edge length distribution clustering coefficient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aiello, W., Bonato, A., Cooper, C., Janssen, J., Prałat, P.: A spatial web graph model with local influence regions. Internet Mathematics 5, 175–196 (2009)CrossRefGoogle Scholar
  2. 2.
    Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Modern Phys. 74, 47–97 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Berger, N., Borgs, C., Chayes, J., Saberi, A.: Asymptotic behavior and distributional limits of preferential attachment graphs. Ann. Prob. (to appear, 2013)Google Scholar
  5. 5.
    Bloznelis, M.: Degree and clustering coefficient in sparse random intersection graphs. Ann. Appl. Prob. 23, 1254–1289 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bollobás, B., Riordan, O.M.: Mathematical results on scale-free random graphs. In: Handbook of Graphs and Networks, pp. 1–34. Wiley-VCH, Weinheim (2003)Google Scholar
  7. 7.
    Bonato, A., Janssen, J., Pralat, P.: Geometric protean graphs. Internet Mathematics 8, 2–28 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cooper, C., Frieze, A., Prałat, P.: Some typical properties of the spatial preferred attachment model. In: Bonato, A., Janssen, J. (eds.) WAW 2012. LNCS, vol. 7323, pp. 29–40. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Dereich, S., Mörters, P.: Random networks with sublinear preferential attachment: degree evolutions. Electron. J. Probab. 14(43), 1222–1267 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Dereich, S., Mörters, P.: Random networks with concave preferential attachment rule. Jahresber. Dtsch. Math.-Ver. 113, 21–40 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dereich, S., Mörters, P.: Random networks with sublinear preferential attachment: the giant component. Ann. Prob. 41, 329–384 (2013)CrossRefzbMATHGoogle Scholar
  12. 12.
    Flaxman, A.D., Frieze, A.M., Vera, J.: A geometric preferential attachment model of networks. Internet Math. 3, 187–205 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Flaxman, A.D., Frieze, A.M., Vera, J.: A geometric preferential attachment model of networks II. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp. 41–55. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Jacob, E., Mörters, P.: Spatial preferential attachment networks: Power laws and clustering coefficients. arXiv:1210.3830 (2012)Google Scholar
  15. 15.
    Janssen, J., Pralat, P., Wilson, R.: Geometric graph properties of the spatial preferred attachment model. Adv. Appl. Math. 50, 243–267 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Jordan, J.: Degree sequences of geometric preferential attachment graphs. Adv. in Appl. Probab. 42, 319–330 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Meester, R., Roy, R.: Continuum percolation. Cambridge Tracts in Mathematics, vol. 119. Cambridge University Press, Cambridge (1996)CrossRefzbMATHGoogle Scholar
  18. 18.
    Penrose, M.: Random geometric graphs. Oxford Studies in Probability, vol. 5. Oxford University Press, Oxford (2003)CrossRefzbMATHGoogle Scholar
  19. 19.
    Penrose, M.D., Yukich, J.E.: Weak laws of large numbers in geometric probability. Ann. Appl. Probab. 13, 277–303 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Rudas, A., Tóth, B., Valkó, B.: Random trees and general branching processes. Random Structures Algorithms 31, 186–202 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Emmanuel Jacob
    • 1
  • Peter Mörters
    • 2
  1. 1.École Normale Supérieure de LyonFrance
  2. 2.University of BathUK

Personalised recommendations