Automatic Braille to Black Conversion

  • Filippo Stanco
  • Matteo Buffa
  • Giovanni Maria Farinella
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8249)

Abstract

The aim of this work is related to the production of inclusive technologies to help people affected by diseases, like the blindness. We present a complete pipeline to convert scanned Braille documents into classic printed text. The tool has been thought as support for assistants (e.g., in the education domain) and parents of blind and partially sighted persons (e.g., children and elderly) for the reading of Braille written documents. The software has been built and tested thanks to the collaboration with experts in the field [1]. Experimental results confirm the effectiveness of the proposed imaging pipeline in terms of conversion accuracy, punctuation, and final page layout.

Keywords

Braille Optical Character Recognition Blind Visually Impaired 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Unione Italiana Ciechi e Ipovedenti (Italian Union of the Blind and Partially Sighted), http://www.uiciechi.it/
  2. 2.
    Kocur, I., Parajasegaram, R., Pokharel, G.: Global Data on Visual Impairment in the Year 2002. Bulletin of the World Health Organization 82 (2004)Google Scholar
  3. 3.
    Bruna, A.R., Farinella, G.M., Guarnera, C.G., Battiato, S.: Forgery detection and value identification of Euro banknotes. Sensors 13(2), 2515–2529 (2013)CrossRefGoogle Scholar
  4. 4.
    Mennens, J., Van Tichelen, L., Francois, G., Engelen, J.J.: Optical recognition of Braille writing using standard equipment. IEEE Transactions on Rehabilitation Engineering 2(4), 207–212 (1994)CrossRefGoogle Scholar
  5. 5.
    Ng, C.M., Ng, V., Lau, Y.: Regular feature extraction for recognition of Braille. In: Proceedings of the Third International Conference on Computational Intelligence and Multimedia Applications, pp. 302–306 (1999)Google Scholar
  6. 6.
    Hentzschel, T.W., Blenkhorn, P.: An optical reading system for embossed Braille characters using a twin shadows approach. International Journal of Microcomputer Applications 18(4), 341–354 (1995)CrossRefGoogle Scholar
  7. 7.
    Wong, L., Abdulla, W., Hussmann, S.: A software algorithm prototype for optical recognition of embossed Braille. In: Proceedings of the International Conference on Pattern Recognition, vol. 2, pp. 586–589 (2004)Google Scholar
  8. 8.
    Tai, Z., Cheng, S., Verma, P., Zhai, Y.: Braille document recognition using Belief Propagation. Journal of Visual Communication and Image Representation 21(7), 722–730 (2010)CrossRefGoogle Scholar
  9. 9.
    Battiato, S., Di Blasi, G., Farinella, G.M., Gallo, G., Guarnera, G.C.: Adaptive Techniques for Microarray Image Analysis with Related Quality Assessment. Journal of Electronic Imaging 16(4), 1–20 (2007)CrossRefGoogle Scholar
  10. 10.
    Schmid, C.: Constructing models for content-based image retrieval. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2001)Google Scholar
  11. 11.
    Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging 13(1), 146–168 (2004)CrossRefGoogle Scholar
  12. 12.
    Atherton, T.J., Kerbyson, D.J.: Size invariant circle detection. Image and Vision Computing 17(11) (1999)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Filippo Stanco
    • 1
  • Matteo Buffa
    • 1
  • Giovanni Maria Farinella
    • 1
  1. 1.Dipartimento di Matematica e InformaticaUniversity of CataniaCataniaItaly

Personalised recommendations