Integrating Knowledge Engineering for Planning with Validation and Verification Tools

  • Andrea Orlandini
  • Giulio Bernardi
  • Amedeo Cesta
  • Alberto Finzi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8249)

Abstract

Knowledge Engineering environments aim at simplifying direct access to the technology for system designers, and the integration of Validation and Verification (V&V) capabilities in such environments may potentially enhance the users trust in the technology. In particular, V&V techniques may represent a complementary technology with respect to Planning and Scheduling (P&S) contributing to develop richer software environments to synthesize a new generation of robust problem-solving applications. This paper presents the integration of classical knowledge engineering features connected to support design of timeline-based P&S applications taking advantage of services of automated V&V techniques such as domain validation, planner validation, plan verification etc. The result is a Knowledge Engineering ENvironment (called KeeN) that exploits a state-of-the-art verification tool, i.e., UPPAAL-TIGA, as core engine to support the design and development of timeline-based planning and scheduling systems.

Keywords

knowledge engineering validation and verification timeline-based planning domain modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barreiro, J., Boyce, M., Do, M., Franky, J., Iatauro, M., Kichkaylo, T., Morris, P., Ong, J., Remolina, E., Smith, T., Smith, D.: EUROPA: A Platform for AI Planning, Scheduling, Constraint Programming, and Optimization. In: The 4th Int. Competition on Knowledge Engineering for Planning and Scheduling, ICKEPS 2012 (2012)Google Scholar
  2. 2.
    Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.: UPPAAL-tiga: Time for playing games! In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Ceballos, A., Bensalem, S., Cesta, A., de Silva, L., Fratini, S., Ingrand, F., Ocon, J., Orlandini, A., Py, F., Rajan, K., Rasconi, R., van Winnendael, M.: A Goal-Oriented Autonomous Controller for Space Exploration. In: Proc. of the 11th Symposium on Advanced Space Technologies in Robotics and Automation, ASTRA 2011 (2011)Google Scholar
  4. 4.
    Cesta, A., Cortellessa, G., Fratini, S., Oddi, A.: Developing an End-to-End Planning Application from a Timeline Representation Framework. In: Proceedings of the 21st Innovative Application of Artificial Intelligence Conference, IAAI 2009, Pasadena, CA, USA (2009)Google Scholar
  5. 5.
    Cesta, A., Finzi, A., Fratini, S., Orlandini, A., Tronci, E.: Analyzing Flexible Timeline Plan. In: Proceedings of the 19th European Conference on Artificial Intelligence, ECAI 2010, vol. 215. IOS Press (2010)Google Scholar
  6. 6.
    Cesta, A., Finzi, A., Fratini, S., Orlandini, A., Tronci, E.: Validation and Verification Issues in a Timeline-Based Planning System. Knowledge Engineering Review 25(3), 299–318 (2010)CrossRefGoogle Scholar
  7. 7.
    Cesta, A., Oddi, A.: DDL.1: A Formal Description of a Constraint Representation Language for Physical Domains. In: Ghallab, M., Milani, A. (eds.) New Directions in AI Planning. IOS Press, Amsterdam (1996)Google Scholar
  8. 8.
    Chien, S., Tran, D., Rabideau, G., Schaffer, S., Mandl, D., Frye, S.: Timeline-Based Space Operations Scheduling with External Constraints. In: Proc. of the 20th International Conference on Automated Planning and Scheduling, ICAPS 2010 (2010)Google Scholar
  9. 9.
    Chien, S.A., Johnston, M., Frank, J., Giuliano, M., Kavelaars, A., Lenzen, C., Policella, N.: A Generalized Timeline Representation, Services, and Interface for Automating Space Mission Operations. In: SpaceOps (2012)Google Scholar
  10. 10.
    Edelkamp, S., Mehler, T.: Knowledge acquisition and knowledge engineering in the ModPlan workbench. In: Proceedings of the First International Competition on Knowledge Engineering for AI Planning (2005)Google Scholar
  11. 11.
    Frank, J., Jonsson, A.: Constraint Based Attribute and Interval Planning. Journal of Constraints 8(4), 339–364 (2003)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Fratini, S., Pecora, F., Cesta, A.: Unifying Planning and Scheduling as Timelines in a Component-Based Perspective. Archives of Control Sciences 18(2), 231–271 (2008)MathSciNetMATHGoogle Scholar
  13. 13.
    Howey, R., Long, D., Fox, M.: VAL: automatic plan validation, continuous effects and mixed initiative planning using PDDL. In: 16th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2004, pp. 294–301 (2004)Google Scholar
  14. 14.
    Khatib, L., Muscettola, N., Havelund, K.: Mapping Temporal Planning Constraints into Timed Automata. In: The Eigth Int. Symposium on Temporal Representation and Reasoning, TIME 2001, pp. 21–27 (2001)Google Scholar
  15. 15.
    Maler, O., Pnueli, A., Sifakis, J.: On the Synthesis of Discrete Controllers for Timed Systems. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  16. 16.
    Morris, P.H., Muscettola, N.: Temporal Dynamic Controllability Revisited. In: Proc. of AAAI 2005, pp. 1193–1198 (2005)Google Scholar
  17. 17.
    Muscettola, N.: HSTS: Integrating Planning and Scheduling. In: Zweben, M., Fox, M.S. (eds.) Intelligent Scheduling. Morgan Kauffmann (1994)Google Scholar
  18. 18.
    Orlandini, A., Finzi, A., Cesta, A., Fratini, S., Tronci, E.: Enriching APSI with Validation Capabilities: the KEEN environment and its use in Robotic. In: Proc. of 11th Symposium on Advanced Space Technologies in Robotics and Automation, ASTRA 2011 (2011)Google Scholar
  19. 19.
    Orlandini, A., Finzi, A., Cesta, A., Fratini, S.: TGA-Based Controllers for Flexible Plan Execution. In: Bach, J., Edelkamp, S. (eds.) KI 2011. LNCS, vol. 7006, pp. 233–245. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Shah, J., Williams, B.C.: Fast Dynamic Scheduling of Disjunctive Temporal Constraint Networks through Incremental Compilation. In: ICAPS 2008, pp. 322–329 (2008)Google Scholar
  21. 21.
    Simpson, R.M., Kitchin, D.E., McCluskey, T.L.: Planning Domain Definition using GIPO. Knowledge Engineering Review 22(2), 117–134 (2007)CrossRefGoogle Scholar
  22. 22.
    Vaquero, T.S., Silva, J.R., Tonidandel, F., Beck, J.C.: itSIMPLE: Towards an Integrated Design System for Real Planning Applications. Knowledge Engineering Review 28(2), 215–230 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Andrea Orlandini
    • 1
  • Giulio Bernardi
    • 1
  • Amedeo Cesta
    • 1
  • Alberto Finzi
    • 2
  1. 1.Istituto di Scienze e Tecnologie della CognizioneCNR - Consiglio Nazionale delle RicercheRomeItaly
  2. 2.Dipartimento di Ingegneria Elettrica e Tecnologie dell’InformazioneUniversità di Napoli “Federico II”NaplesItaly

Personalised recommendations