Process Fragment Recognition in Clinical Documents

  • Camilo Thorne
  • Elena Cardillo
  • Claudio Eccher
  • Marco Montali
  • Diego Calvanese
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8249)


We describe a first experiment on automated activity and relation identification, and more in general, on the automated identification and extraction of computer-interpretable guideline fragments from clinical documents. We rely on clinical entity and relation (activities, actors, artifacts and their relations) recognition techniques and use MetaMap and the UMLS Metathesaurus to provide lexical information. In particular, we study the impact of clinical document syntax and semantics on the precision of activity and temporal relation recognition.


Clinical entity and relation recognition UMLS Metathesaurus natural language processing process fragment recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aronson, A.R., Lang, F.-M.: An overview of MetaMap: Historical perspective and recent advances. J. of the American Medical Informatics Association 17(3), 229–236 (2010)Google Scholar
  2. 2.
    Ben Abacha, A., Zweigenbaum, P.: Medical entity recognition: A comparison of semantic and statistical methods. In: Proc. of the BioNLP 2011 Work. (2011)Google Scholar
  3. 3.
    De Clercq, P., Kaiser, K., Hasman, A.: Computer interpretable medical guidelines. In: Ten Teije, A., et al. (eds.) Computer-based Medical Guidelines and Protocols: A Primer and Current Trends, ch. 2, pp. 22–43. IOS Press (2008)Google Scholar
  4. 4.
    Denecke, K.: Structuring of and information extraction from medical documents using the UMLS. Methods of Information in Medicine 47(5), 425–434 (2008)Google Scholar
  5. 5.
    di Ciccio, C., Metella, M.: Studies on the discovery of declarative control flows from error-prone data. In: Proc. of the Third International Symposium on Data-Driven Process Discovery and Analysis, SIMPDA 2013 (2013)Google Scholar
  6. 6.
    Field, M.J., Lohr, K.N. (eds.): Clinical Practice Guidelines. Directions for a New Program. National Academy Press (1990)Google Scholar
  7. 7.
    Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural language text. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 482–496. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Friedman, C., Hripcsak, G.: Evaluating natural language processors in the clinical domain. In: Proc. of the Conf. on Natural Language and Medical Concept Representation (1997)Google Scholar
  9. 9.
    Hahn, U., Romacker, M., Schulz, S.: MEDSYNDICATE–A natural language system for the extraction of medical information from findings reports. Int. J. of Medical Informatics 67(1-3), 41–52 (2002)Google Scholar
  10. 10.
    Kaiser, K., Akkaya, C., Miksch, S.: How can information extraction ease formalizing of treatment processes in clinical practice guidelines? Artificial Intelligence in Medicine 39(2), 151–163 (2007)CrossRefGoogle Scholar
  11. 11.
    Kilicoglu, H., Rosenblat, G., Fiszman, M., Rindfleisch, T.C.: Constructing a semantic predication gold standard from the biomedical literature. BMC Bioinformatics 12(486) (2011)Google Scholar
  12. 12.
    Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of the 41st Meeting of the Association for Computational Linguistics, ACL 2003 (2003)Google Scholar
  13. 13.
    Ko, R.K.L., Lee, S.S.G., Lee, E.W.: Business process mangament (BPM) standards: A survey. Business Process Management J. 15(5), 744–791 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Meystre, S., Haug, P.: Natural language processing to extract medical problems from electronic clinical documents. J. of Biomedical Informatics 39(6), 589–599 (2006)CrossRefGoogle Scholar
  15. 15.
    Mulyar, N., Pesic, M., van der Aalst, W.M.P., Peleg, M.: Declarative and procedural approaches for modelling clinical guidelines: Addressing flexibility issues. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM 2007 Workshops. LNCS, vol. 4928, pp. 335–346. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Roberts, A., Gaizaskas, R., Hepple, M., Davis, N., Demetriou, G., Guo, Y., Kola, J., Roberts, I., Setzer, A., Tapuria, A., Wheeldin, B.: The CLEF corpus: Semantic annotation of a clinical text. In: Proc. of the AMIA 2007 Annual Symp. (2007)Google Scholar
  17. 17.
    Savova, G.K., Masanz, J.J., Ogren, P.V., Zheng, J., Sohn, S., Kipper-Schuler, K.C., Chute, C.G.: Mayo clinical text analysis and knowledge extraction system (cTAKES): Architecture, component evaluation and applications. J. of the American Medical Informatics Association 17(5), 507–513 (2010)CrossRefGoogle Scholar
  18. 18.
    Serban, R., ten Teije, A., van Harmelen, F., Marcos, M., Polo-Conde, C.: Extraction and use of linguistics patterns for modelling medical guidelines. Artificial Intelligence in Medicine 39(2), 137–149 (2007)CrossRefGoogle Scholar
  19. 19.
    Valiant, L.G.: A theory of the learnable. Communications of the ACM 27(11), 1134–1142 (1984)CrossRefzbMATHGoogle Scholar
  20. 20.
    Zhou, D., He, Y.: Semantic parsing for biomedical event extraction. In: Proc. of the Ninth Int. Conf. on Computational Semantics, IWCS 2011 (2011)Google Scholar
  21. 21.
    Zhou, X., Han, H., Chankai, I., Prestud, A., Brooks, A.: Approaches to text mining for clinical medical records. In: Proc. of the 2006 ACM Symposium on Applied Computing (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Camilo Thorne
    • 1
  • Elena Cardillo
    • 2
  • Claudio Eccher
    • 2
  • Marco Montali
    • 1
  • Diego Calvanese
    • 1
  1. 1.Free University of Bozen-BolzanoBolzanoItaly
  2. 2.Fondazione Bruno KesslerItaly

Personalised recommendations