Network Physiology: Mapping Interactions Between Networks of Physiologic Networks

  • Plamen Ch. IvanovEmail author
  • Ronny P. Bartsch
Part of the Understanding Complex Systems book series (UCS)


The human organism is an integrated network of interconnected and interacting organ systems, each representing a separate regulatory network. The behavior of one physiological system (network) may affect the dynamics of all other systems in the network of physiologic networks. Due to these interactions, failure of one system can trigger a cascade of failures throughout the entire network. We introduce a systematic method to identify a network of interactions between diverse physiologic organ systems, to quantify the hierarchical structure and dynamics of this network, and to track its evolution under different physiologic states. We find a robust relation between network structure and physiologic states: every state is characterized by specific network topology, node connectivity and links strength. Further, we find that transitions from one physiologic state to another trigger a markedly fast reorganization in the network of physiologic interactions on time scales of just a few minutes, indicating high network flexibility in response to perturbations. This reorganization in network topology occurs simultaneously and globally in the entire network as well as at the level of individual physiological systems, while preserving a hierarchical order in the strength of network links. Our findings highlight the need of an integrated network approach to understand physiologic function, since the framework we develop provides new information which can not be obtained by studying individual systems. The proposed system-wide integrative approach may facilitate the development of a new field, Network Physiology.


Network Topology Network Connectivity Sleep Stage Physiologic System Network Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank our collaborators A. Bashan, T. Penzel, J. W. Kantelhardt, S. Havlin, A. Y. Schumann and P. Bernaola-Galván. We acknowledge support from National Institutes of Health Grant 1R01-HL098437, the US-Israel Binational Science Foundation (BSF Grant 2012219), the Office of Naval Research (ONR Grant 000141010078) and the Brigham and Women’s Hospital Biomedical Research Institute Fund. R. P. Bartsch acknowledges support from the German Academic Exchange Service (Deutscher Akademischer Austauschdienst Fellowship).


  1. 1.
    Buchman, T. G. Complex Systems Science in BioMedicine, chap. Physiologic failure: multiple organ dysfunction syndrome, 631–640 (New York: Kluwer Academic/Plenum Publishers, 2006).Google Scholar
  2. 2.
    Deitch, E. A. Multiple organ failure. Pathophysiology and potential future therapy. Ann Surg 216, 117–134 (1992).Google Scholar
  3. 3.
    Lizana, F. G., Alonso, J. L. M., Santana, B. G., Esteban, J. F. & Santana, P. S. Survival and quality of life of patients with multiple organ failure one year after leaving an intensive care unit. Med Clin (Barc) 114 Suppl 3, 99–103 (2000).Google Scholar
  4. 4.
    Bassingthwaighte, J. B., Liebovitch, L. & West, B. J. Fractal Physiology. (Oxford University Press, 1994).Google Scholar
  5. 5.
    West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).Google Scholar
  6. 6.
    Bunde, A. et al. Correlated and uncorrelated regions in heart-rate fluctuations during sleep. Phys. Rev. Lett. 85, 3736–3739 (2000).Google Scholar
  7. 7.
    Dvir, I., Adler, Y., Freimark, D. & Lavie, P. Evidence for fractal correlation properties in variations of peripheral arterial tone during REM sleep. Am. J. Physiol. Heart Circ. Physiol. 283, H434–H439 (2002).Google Scholar
  8. 8.
    Ivanov, P. Ch. et al. Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis. Nature 383, 323–327 (1996).Google Scholar
  9. 9.
    Schäfer, C., Rosenblum, M. G., Kurths, J. & Abel, H. H. Heartbeat synchronized with ventilation. Nature 392, 239–240 (1998).Google Scholar
  10. 10.
    Shlesinger, M. F., Zaslavsky, G. M. & Klafter, J. Strange kinetics. Nature 363, 31–37 (1993).Google Scholar
  11. 11.
    Collins, J. J., Imhoff, T. T. & Grigg, P. Noise-enhanced tactile sensation. Nature 383, 770 (1996).Google Scholar
  12. 12.
    Hegger, R., Bunner, M. J., Kantz, H. & Giaquinta, A. Identifying and modeling delay feedback systems. Phys. Rev. Lett. 81, 558–561 (1998).Google Scholar
  13. 13.
    Albert, R. & Barabási, A. L. Statistical mechanics of complex networks. Rev. Mod. Physics 74, 47–97 (2002).Google Scholar
  14. 14.
    Song, C., Havlin, S. & Makse, H. A. Self-similarity of complex networks. Nature 433, 392–395 (2005).Google Scholar
  15. 15.
    Albert, R., Jeong, H. & Barabási, A. L. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000).Google Scholar
  16. 16.
    Cohen, R., Havlin, S. & Ben-Avraham, D. Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91, 247901 (2003).Google Scholar
  17. 17.
    Newman, M. E. J. The structure and function of complex networks. Siam Rev. 45, 167–256 (2003).Google Scholar
  18. 18.
    Dorogovtsev, S. N. & Mendes, J. F. F. Evolution of networks. Advances in Physics 51, 1079–1187 (2002).Google Scholar
  19. 19.
    Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–183 (2000).Google Scholar
  20. 20.
    Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010).Google Scholar
  21. 21.
    Watts, D. J. & Strogatz, S. H. Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998).Google Scholar
  22. 22.
    Banavar, J. R., Maritan, A. & Rinaldo, A. Size and form in efficient transportation networks. Nature 399, 130–132 (1999).Google Scholar
  23. 23.
    Colizza, V., Barrat, A., Barthélemy, M. & Vespignani, A. The role of the airline transportation network in the prediction and predictability of global epidemics. Proc. Natl. Acad. Sci. USA 103, 2015–2020 (2006).Google Scholar
  24. 24.
    de Menezes, M. A. & Barabási, A.-L. Fluctuations in network dynamics. Phys. Rev. Lett. 92, 028701 (2004).Google Scholar
  25. 25.
    Mantegna, R. Hierarchical structure in financial markets. Eur. Phys. J. B 11, 193–197 (1999).Google Scholar
  26. 26.
    Newman, M. E. J. The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98, 404–409 (2001).Google Scholar
  27. 27.
    Tumminello, M., Di Matteo, T., Aste, T. & Mantegna, R. N. Correlation based networks of equity returns sampled at different time horizons. Eur. Phys. J. B 55, 209–217 (2007).Google Scholar
  28. 28.
    Tumminello, M. et al. Happy aged people are all alike, while every unhappy aged person is unhappy in its own way. PLoS One 6, e23377 (2011).Google Scholar
  29. 29.
    Tumminello, M., Lillo, F., Piilo, J. & Mantegna, R. N. Identification of clusters of investors from their real trading activity in a financial market. New Journal of Physics 14 (2012).Google Scholar
  30. 30.
    Becskei, A. & Serrano, L. Engineering stability in gene networks by autoregulation. Nature 405, 590–593 (2000).Google Scholar
  31. 31.
    Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913–917 (1997).Google Scholar
  32. 32.
    Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. The large-scale organization of metabolic networks. Nature 407, 651–653 (2000).Google Scholar
  33. 33.
    Bhalla, U. S. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science 283, 381–387 (1999).Google Scholar
  34. 34.
    Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001).Google Scholar
  35. 35.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D. U. Complex networks: Structure and dynamics. Phys. Rep. 424, 175–308 (2006).Google Scholar
  36. 36.
    Ivanov, P. Ch. et al. Sleep-wake differences in scaling behavior of the human heartbeat: analysis of terrestrial and long-term space flight data. Europhys. Lett. 48, 594–600 (1999).Google Scholar
  37. 37.
    Karasik, R. et al. Correlation differences in heartbeat fluctuations during rest and exercise. Phys. Rev. E 66, 062902 (2002).Google Scholar
  38. 38.
    Ivanov, P. Ch., Hu, K., Hilton, M. F., Shea, S. A. & Stanley, H. E. Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics. Proc. Natl. Acad. Sci. USA 104, 20702–20707 (2007).Google Scholar
  39. 39.
    Angelone, A. & Coulter, N. A. Respiratory sinus arrhythmia: a frequency dependent phenomenon. J. Appl. Physiol. 19, 479–482 (1964).Google Scholar
  40. 40.
    Song, H.-S. & Lehrer, P. M. The effects of specific respiratory rates on heart rate and heart rate variability. Appl. Psychophysiol. Biofeedback 28, 13–23 (2003).Google Scholar
  41. 41.
    Tass, P. et al. Detection of n : m phase locking from noisy data: Application to magnetoencephalography. Phys. Rev. Lett. 81, 3291–3294 (1998).Google Scholar
  42. 42.
    Bartsch, R., Kantelhardt, J. W., Penzel, T. & Havlin, S. Experimental evidence for phase synchronization transitions in the human cardiorespiratory system. Phys. Rev. Lett. 98, 054102 (2007).Google Scholar
  43. 43.
    Leeuwen, P. V. et al. Influence of paced maternal breathing on fetal-maternal heart rate coordination. Proc. Natl. Acad. Sci. USA 106, 13661–13666 (2009).Google Scholar
  44. 44.
    Ivanov, P. Ch., Ma, Q. D. Y. & Bartsch, R. P. Maternal-fetal heartbeat phase synchronization. Proc. Natl. Acad. Sci. USA 106, 13641–13642 (2009).Google Scholar
  45. 45.
    Schumann, A. Y., Bartsch, R. P., Penzel, T., Ivanov, P. Ch. & Kantelhardt, J. W. Aging effects on cardiac and respiratory dynamics in healthy subjects across sleep stages. Sleep 33, 943–955 (2010).Google Scholar
  46. 46.
    Bartsch, R. P., Schumann, A. Y., Kantelhardt, J. W., Penzel, T. & Ivanov, P. Ch. Phase transitions in physiologic coupling. Proc. Natl. Acad. Sci. USA 109, 10181–10186 (2012).Google Scholar
  47. 47.
    Bashan, A., Bartsch, R. P., Kantelhardt, J. W., Havlin, S. & Ivanov, P. Ch. Network physiology reveals relations between network topology and physiological function. Nat. Commun. 3, 702 (2012).Google Scholar
  48. 48.
    Otzenberger, H. et al. Dynamic heart rate variability: a tool for exploring sympathovagal balance continuously during sleep in men. Am. J. Physiol. 275, H946–H950 (1998).Google Scholar
  49. 49.
    Podobnik, B., Fu, D. F., Stanley, H. E. & Ivanov, P. Ch. Power-law autocorrelated stochastic processes with long-range cross-correlations. Eur. Phys. J. B 56, 47–52 (2007).Google Scholar
  50. 50.
    Kryger, M. H., Roth, T. & Dement, W. C. (eds.) Principles and Practice of Sleep Medicine (Elsevier Saunders, Philadelphia, 1994).Google Scholar
  51. 51.
    Siegel, J. M. Clues to the functions of mammalian sleep. Nature 437, 1264–1271 (2005).Google Scholar
  52. 52.
    Massimini, M. et al. Breakdown of cortical effective connectivity during sleep. Science 309, 2228–2232 (2005).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Physics and Center for Polymer StudiesBoston UniversityBostonUSA
  2. 2.Institute of Solid State PhysicsBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Harvard Medical School and Division of Sleep MedicineBrigham and Women’s HospitalBostonUSA

Personalised recommendations