Advertisement

Binary Consensus via Exponential Smoothing

  • Marco A. Montes de Oca
  • Eliseo Ferrante
  • Alexander Scheidler
  • Louis F. Rossi
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 126)

Abstract

In this paper, we reinterpret the most basic exponential smoothing equation, S t + 1 = (1 − α)S t  + αX t , as a model of social influence. This equation is typically used to estimate the value of a series at time t + 1, denoted by S t + 1, as a convex combination of the current estimate S t and the actual observation of the time series X t . In our work, we interpret the variable S t as an agent’s tendency to adopt the observed behavior or opinion of another agent, which is represented by a binary variable X t . We study the dynamics of the resulting system when the agents’ recently adopted behaviors or opinions do not change for a period of time of stochastic duration, called latency. Latency allows us to model real-life situations such as product adoption, or action execution. When different latencies are associated with the two different behaviors or opinions, a bias is produced. This bias makes all the agents in a population adopt one specific behavior or opinion. We discuss the relevance of this phenomenon in the swarm intelligence field.

Keywords

Consensus Collective Decision-Making Self-Organization Swarm Intelligence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bass, F.M.: A new product growth for model consumer durables. Management Science 15(5), 215–227 (1969)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Santa Fe Institute Studies on the Sciences of Complexity, Oxford University Press, New York (1999)Google Scholar
  3. 3.
    Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Reviews of Modern Physics 81(2), 591–646 (2009)CrossRefGoogle Scholar
  4. 4.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Books, MIT Press, Cambridge, MA (2004)zbMATHGoogle Scholar
  5. 5.
    Faria, J.J., Krause, S., Krause, J.: Collective behavior in road crossing pedestrians: the role of social information. Behavioral Ecology 21(6), 1236–1242 (2010)CrossRefGoogle Scholar
  6. 6.
    Gardner Jr., E.S.: Exponential smoothing: The state of the art–Part II. International Journal of Forecasting 22(4), 637–666 (2006)CrossRefGoogle Scholar
  7. 7.
    Giraldeau, L.A., Valone, T.J., Templeton, J.J.: Potential disadvantages of using socially acquired information. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 357(1427), 1559–1566 (2002)Google Scholar
  8. 8.
    Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized shortcuts in the argentine ant. Naturwissenschaften 76(12), 579–581 (1989)CrossRefGoogle Scholar
  9. 9.
    Granovetter, M.: Threshold models of collective behavior. The American Journal of Sociology 83(6), 1420–1443 (1978)CrossRefGoogle Scholar
  10. 10.
    Hyndman, R., Koehler, A., Ord, K., Snyder, R.: Forecasting with Exponential Smoothing. The State Space Approach. Springer, Berlin (2008)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948. IEEE Press, Piscataway (1995)CrossRefGoogle Scholar
  12. 12.
    Lambiotte, R., Saramäki, J., Blondel, V.D.: Dynamics of latent voters. Physical Review E 79(4), 046107, 6 pages (2009)Google Scholar
  13. 13.
    Montes de Oca, M.A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., Dorigo, M.: Majority-rule opinion dynamics with differential latency: A mechanism for self-organized collective decision-making. Swarm Intelligence 5(3-4), 305–327 (2011)CrossRefGoogle Scholar
  14. 14.
    Pillot, M.H., Gautrais, J., Gouello, J., Michelena, P., Sibbald, A., Bon, R.: Moving together: Incidental leaders and naïve followers. Behavioural Processes 83(3), 235–241 (2010)CrossRefGoogle Scholar
  15. 15.
    Rendell, L., Boyd, R., Cownden, D., Enquist, M., Eriksson, K., Feldman, M.W., Fogarty, L., Ghirlanda, S., Lillicrap, T., Laland, K.N.: Why copy others? Insights from the social learning strategies tournament. Science 328(5975), 208–213 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Scheidler, A., Brutschy, A., Ferrante, E., Dorigo, M.: The k-unanimity rule for self-organized decision making in swarms of robots. Tech. rep., TR-IRIDIA/2011-23, IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium (October 2011)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2013

Authors and Affiliations

  • Marco A. Montes de Oca
    • 1
  • Eliseo Ferrante
    • 2
    • 3
  • Alexander Scheidler
    • 4
  • Louis F. Rossi
    • 1
  1. 1.Department of Mathematical SciencesUniversity of DelawareUSA
  2. 2.IRIDIA, CoDEUniversité Libre de BruxellesBelgium
  3. 3.Socioecology and Social Evolution LabKatholieke Universiteit LeuvenBelgium
  4. 4.Fraunhofer IWESGermany

Personalised recommendations