Personalized Vaccination Using Ontology Based Profiling

  • Ozgu Can
  • Emine Sezer
  • Okan Bursa
  • Murat Osman Unalir
Part of the Communications in Computer and Information Science book series (CCIS, volume 390)


Ontology-based knowledge representation and modeling for vaccine domain provides an effective mechanism to improve the quality of healthcare information systems. Vaccination process generally includes different processes like vaccine research and development, production, transportation, administration and tracking of the adverse events that may occur after the administration of vaccine. Moreover, vaccination process may cause some side effects that could cause permanent disability or even be fatal. Therefore, it is important to build and store the vaccine information by developing a vaccine data standardization. In the vaccination process, there are different stakeholders, such as individuals who get the vaccination, health professionals who apply the vaccination, health organizations, vaccine producers, pharmacies and drug warehouses. In this paper, a vaccine data standardization is proposed and a generic user modeling is applied in the context of personalized vaccination for healthcare information systems. Besides, policies are also used to strengthen the proposed personalized vaccination model by defining clinical guidances for individuals. The proposed personalized vaccination system offers a better management of vaccination process and supports the tracking of individual’s medical information.


Medical Knowledge Management Semantic Web Vaccine Ontology Healthcare Personalization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    MN-PHIN Steering Committee: Public Health Data Standards, Improving How Public Health Collects, Exchanges and Uses Data (2006)Google Scholar
  2. 2.
    Lopez, D.M., Blobel, B.G.: A Development Framework for Semantically Interoperable Health Information Systems. International Journal of Medical Informatics 78(2), 83–103 (2009)CrossRefGoogle Scholar
  3. 3.
    Della Valle, E., Cerizza, D., Celino, I., Dogac, A., Laleci, G., Kabak, Y., Okcan, A., Gulderen, O., Namli, T., Bicer, V.: The Need for Semantic Web Service in the eHealth. In: W3C Workshop on Frameworks for Semantics in Web Services (2005)Google Scholar
  4. 4.
    Rich, E.: Users are Individuals: Individualizing User Models. International Journal of Man-Machine Studies 18, 199–214 (1983)CrossRefGoogle Scholar
  5. 5.
    Goldbeck, J., Rothstein, M.: Linking Social Networks on the Web with FOAF. In: Proceeding AAAI 2008 Proceedings of the 23rd National Conference on Artificial Intelligence, vol. 2, pp. 1138–1143 (2008)Google Scholar
  6. 6.
    Terzi, E., Vakali, A., Hacid, M.-S.: Knowledge Representation, Ontologies, and the Semantic Web. In: Zhou, X., Zhang, Y., Orlowska, M.E. (eds.) APWeb 2003. LNCS, vol. 2642, pp. 382–387. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Eysenbach, G.: The Semantic Web and healthcare consumers: A new challenge and opportunity on the horizon? International Journal of Healthcare Technology and Management 5, 194–212 (2003)CrossRefGoogle Scholar
  8. 8.
    Gruber, T.R.: A translation approach to portable ontology specifications. Journal Knowledge Acquisition - Special Issue: Current Issues in Knowledge Modeling 5(2), 199–220 (1993)CrossRefGoogle Scholar
  9. 9.
    Noy, N., McGuinness, D.L.: Ontology Development 101: A Guide to Creating Your First Ontology. Knowledge Systems Lab., Stanford University (2001)Google Scholar
  10. 10.
    OWL Ontology Metrics - OWL at Manchester (2009),
  11. 11.
    Kagal, L., Finin, T., Joshi, A.: A Policy Language for A Pervasive Computing Environment. In: IEEE 4th International Workshop on Policies for Distributed Systems and Networks, pp. 63–74 (2003)Google Scholar
  12. 12.
    Trombert-Paviot, B., Rodrigues, J.M., Rogers, J.E., Baud, R., Van Der Haring, E., Rassinoux, A.M., Abrial, V., Clavel, L., ve Idir, H.: GALEN: A third generation terminology tool to support a multipurpose national coding system for surgical procedures. Int. Journal of Medical Informatics 59, 71–85 (2000)Google Scholar
  13. 13.
    Harris, M.A., Clark, J., Ireland, A., Lomax, J., Ashburner, M., Foulger, R., et al.: The gene ontology (GO) database and informatics resource. Nucleic Acids Research 32, D258–D261 (2004)Google Scholar
  14. 14.
    Lukovic, V., Milosevic, D., Devedzic, G., Sukic, C., Kudumovic, M., Ristic, B.: OBR-Prox-femur Application Ontology Development and Modeling. HealthMED Journal 2010 4(2), 404–416 (2010)Google Scholar
  15. 15.
    ISO/TS 18308: Health informatics – Requirements for an electronic health record architecture. Tech. speci., TS 18308, International Organization for Standardization, Geneva, Switzerland (2004)Google Scholar
  16. 16.
    He, Y., Cowell, L., Diehl, A., Mobley, H.L., Peters, B., Ruttenberg, A., Scheuermann, R.H., Brinkman, R.R., Courtot, M., Mungall, C.: VO: Vaccine Ontology. In: The 1st International Conference on Biomedical Ontology (ICBO 2009) Nature Precedings, Buffalo, NY, USA (2009)Google Scholar
  17. 17.
    Lin, Y., He, Y.: Ontology representation and analysis of vaccine formulation and administration and their effects on vaccine immune responses. Journal of Biomedical Semantics 3, 17 (2012)CrossRefGoogle Scholar
  18. 18.
    Bhatt, M., Rahayu, W., Soni, S.P., Wouters, C.: Ontology driven semantic profiling and retrieval in medical information systems. Web Semantics: Science, Services and Agents on the World Wide Web 7(4), 317–331 (2009)CrossRefGoogle Scholar
  19. 19.
    da Silva, J.L.T., Moreto Ribeiro, A., Boff, E., Primo, T., Viccari, R.M.: A Reference Ontology for Profile Representation in Communities of Practice. In: García-Barriocanal, E., Cebeci, Z., Okur, M.C., Öztürk, A. (eds.) MTSR 2011. CCIS, vol. 240, pp. 68–79. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Uszok, A., Bradshaw, J.M., Jeffers, R.: KAoS: A Policy and Domain Services Framework for Grid Computing and Semantic Web Services. In: Jensen, C., Poslad, S., Dimitrakos, T. (eds.) iTrust 2004. LNCS, vol. 2995, pp. 16–26. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Dulay, N., Lupu, E., Sloman, M., Damianou, N.: A Policy Deployment Model for The Ponder Language. In: Proceedings of IEEE/IFIP International Symposium on Integrated Network Management (IM 2001), pp. 14–18 (2001)Google Scholar
  22. 22.
    Tonti, G., Bradshaw, J.M., Jeffers, R., Montanari, R., Suri, N., Uszok, A.: Semantic Web Languages for Policy Representation and Reasoning: A Comparison of KAoS, Rei, and Ponder. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 419–437. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Can, O., Bursa, O., Unalir, M.O.: Personalizable Ontology-Based Access Control. Gazi University Journal of Science 23(4), 465–474 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ozgu Can
    • 1
  • Emine Sezer
    • 1
  • Okan Bursa
    • 1
  • Murat Osman Unalir
    • 1
  1. 1.Department of Computer EngineeringEge UniversityBornova-IzmirTurkey

Personalised recommendations