Advertisement

A Preliminary Approach on Ontology-Based Visual Query Formulation for Big Data

  • Ahmet Soylu
  • Martin G. Skjæveland
  • Martin Giese
  • Ian Horrocks
  • Ernesto Jimenez-Ruiz
  • Evgeny Kharlamov
  • Dmitriy Zheleznyakov
Part of the Communications in Computer and Information Science book series (CCIS, volume 390)

Abstract

Data access in an enterprise setting is a determining factor for the potential of value creation processes such as sense-making, decision making, and intelligence analysis. As such, providing friendly data access tools that directly engage domain experts (i.e., end-users) with data, as opposed to the situations where database/IT experts are required to extract data from databases, could substantially increase competitiveness and profitability. However, the ever increasing volume, complexity, velocity, and variety of data, known as the Big Data phenomenon, renders the end-user data access problem even more challenging. Optique, an ongoing European project with a strong industrial perspective, aims to countervail the Big Data effect, and to enable scalable end-user data access to traditional relational databases by using an ontology-based approach. In this paper, we specifically present the preliminary design and development of our ontology-based visual query system and discuss directions for addressing the Big Data effect.

Keywords

Visual Query Formulation Ontology-based Data Access Big Data End-user Data Access Visual Query Systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nunameker, J.F., Briggs, R.O., de Vreede, G.J.: From Information Technology to Value Creation Technology. In: Information Technology and the Future Enterprise: New Models for Managers, pp. 102–124. Prentice-Hall, New York (2001)Google Scholar
  2. 2.
    Giese, M., Calvanese, D., Horrocks, I., Ioannidis, Y., Klappi, H., Koubarakis, M., Lenzerini, M., Möller, R., Özcep, Ö., Rodriguez Muro, M., Rosati, R., Schlatte, R., Soylu, A., Waaler, A.: Scalable End-user Access to Big Data. In: Rajendra, A. (ed.) Big Data Computing. Chapman and Hall/CRC (2013)Google Scholar
  3. 3.
    Catarci, T., Costabile, M.F., Levialdi, S., Batini, C.: Visual query systems for databases: A survey. Journal of Visual Languages and Computing 8(2), 215–260 (1997)CrossRefGoogle Scholar
  4. 4.
    Shneiderman, B.: Direct Manipulation: A Step Beyond Programming Languages. Computer 16(8), 57–69 (1983)CrossRefGoogle Scholar
  5. 5.
    Zloof, M.M.: Query-by-Example: A data base language. IBM System Journal 16(4), 324–343 (1997)CrossRefGoogle Scholar
  6. 6.
    Erwig, M.: Xing: A visual XML query language. Journal of Visual Languages and Computing 14(1), 5–45 (2003)CrossRefGoogle Scholar
  7. 7.
    Catarci, T., Dongilli, P., Di Mascio, T., Franconi, E., Santucci, G., Tessaris, S.: An ontology based visual tool for query formulation support. In: 16th European Conference on Artificial Intelligence (ECAI 2004). Frontiers in Artificial Intelligence and Applications, vol. 110, pp. 308–312. IOS Press (2004)Google Scholar
  8. 8.
    Barzdins, G., Liepins, E., Veilande, M., Zviedris, M.: Ontology Enabled Graphical Database Query Tool for End-Users. In: 8th International Baltic Conference on Databases and Information Systems (DB&IS 2008). Frontiers in Artificial Intelligence and Applications, vol. 187, pp. 105–116. IOS Press (2009)Google Scholar
  9. 9.
    Kogalovsky, M.R.: Ontology-Based Data Access Systems. Programming and Computer Software 38(4), 167–182 (2012)CrossRefGoogle Scholar
  10. 10.
    Laney, D.: 3D Data Management: Controlling Data Volume, Velocity and Variety. Technical report, META Group (2001)Google Scholar
  11. 11.
    Madden, S.: From Databases to Big Data. IEEE Internet Computing 16(3), 4–6 (2012)CrossRefGoogle Scholar
  12. 12.
    Lieberman, H., Paternò, F., Wulf, V. (eds.): End User Development. Human-Computer Interaction Series, vol. 9. Springer (2006)Google Scholar
  13. 13.
    Epstein, R.G.: The TableTalk Query Language. Journal of Visual Languages and Computing 2, 115–141 (1991)CrossRefGoogle Scholar
  14. 14.
    Siau, K.L., Chan, H.C., Wei, K.K.: Effects of query complexity and learning on novice user query performance with conceptual and logical database interfaces. IEEE Transactions on Systems, Man and Cybernetics – Part A: Systems and Humans 34(2), 276–281 (2004)CrossRefGoogle Scholar
  15. 15.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web – A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities. Scientific American 284(5), 34–43 (2001)CrossRefGoogle Scholar
  16. 16.
    Rodriguez-Muro, M., Lubyte, L., Calvanese, D.: Realizing ontology based data access: A plug-in for Protégé. In: IEEE 24th International Conference on Data Engineering Workshop (ICDEW 2008), pp. 353–356. IEEE (2008)Google Scholar
  17. 17.
    Rodriguez-Muro, M., Calvanese, D.: Quest, a System for Ontology Based Data Access. In: OWL: Experiences and Directions Workshop 2012 (OWLED 2012). CEUR Workshop Proceedings, vol. 849. CEUR-WS.org (2012)Google Scholar
  18. 18.
    Ruiz, F., Hilera, J.R.: Using Ontologies in Software Engineering and Technology. In: Calero, C., Ruiz, F., Piattini, M. (eds.) Ontologies for Software Engineering and Software Technology, pp. 49–102. Springer (2006)Google Scholar
  19. 19.
    Spanos, D.E., Stavrou, P., Mitrou, N.: Bringing relational databases into the Semantic Web: A survey. Semantic Web 3(2), 169–209 (2012)Google Scholar
  20. 20.
    Coutaz, J., Crowley, J.L., Dobson, S., Garlan, D.: Context is key. Communications of the ACM 48(3), 49–53 (2005)CrossRefGoogle Scholar
  21. 21.
    Marchionini, G., White, R.: Find What You Need, Understand What You Find. International Journal of Human-Computer Interaction 23(3), 205–237 (2007)CrossRefGoogle Scholar
  22. 22.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked Data – The Story So Far. International Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)CrossRefGoogle Scholar
  23. 23.
    Tunkelang, D., Marchionini, G.: Faceted Search. In: Synthesis Lectures on Information Concepts, Retrieval, and Services. Morgan and Claypool Publishers (2009)Google Scholar
  24. 24.
    ter Hofstede, A., Proper, H., van der Weide, T.: Query Formulation as an Information Retrieval Problem. Computer Journal 39(4), 255–274 (1996)CrossRefGoogle Scholar
  25. 25.
    Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach, J., Lerer, A., Sheets, D.: Tabulator: Exploring and Analyzing linked data on the Semantic Web. In: 3rd International Semantic Web User Interaction Workshop (SWUI 2006) (2006)Google Scholar
  26. 26.
    Zviedris, M., Barzdins, G.: ViziQuer: A Tool to Explore and Query SPARQL Endpoints. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 441–445. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Popov, I.O., Schraefel, M.C., Hall, W., Shadbolt, N.: Connecting the Dots: A Multi-pivot Approach to Data Exploration. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 553–568. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  28. 28.
    Yee, K.P., Swearingen, K., Li, K., Hearst, M.: Faceted metadata for image search and browsing. In: SIGCHI Conference on Human Factors in Computing Systems (CHI 2003), pp. 401–408. ACM (2003)Google Scholar
  29. 29.
    Schraefel, M.C., Wilson, M., Russell, A., Smith, D.A.: mSpace: Improving information access to multimedia domains with multimodal exploratory search. Communications of the ACM 49(4), 47–49 (2006)CrossRefGoogle Scholar
  30. 30.
    Huynh, D.F., Karger, D.R., Miller, R.C.: Exhibit: Lightweight Structured Data Publishing. In: 16th International Conference on World Wide Web (WWW 2007), pp. 737–746. ACM (2007)Google Scholar
  31. 31.
    Huynh, D.F., Karger, D.R.: Parallax and Companion: Set-based Browsing for the Data Web. Available online (2009)Google Scholar
  32. 32.
    Kobilarov, G., Dickinson, I.: Humboldt: Exploring Linked Data. In: Linked Data on the Web Workshop (2008)Google Scholar
  33. 33.
    Harth, A.: VisiNav: A system for visual search and navigation on web data. Journal of Web Semantics 8(4), 348–354 (2010)CrossRefGoogle Scholar
  34. 34.
    Suh, B., Bederson, B.B.: OZONE: A Zoomable Interface for Navigating Ontology Information. In: Working Conference on Advanced Visual Interfaces (AVI 2002), pp. 139–143. ACM (2002)Google Scholar
  35. 35.
    Heim, P., Ziegler, J.: Faceted Visual Exploration of Semantic Data. In: Ebert, A., Dix, A., Gershon, N.D., Pohl, M. (eds.) HCIV (INTERACT) 2009. LNCS, vol. 6431, pp. 58–75. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  36. 36.
    Soylu, A., Moedritscher, F., Wild, F., De Causmaecker, P., Desmet, P.: Mashups by orchestration and widget-based personal environments: Key challenges, solution strategies, and an application. Program: Electronic Library and Information Systems 46(4), 383–428 (2012)CrossRefGoogle Scholar
  37. 37.
    Calvanese, D., Giese, M., Haase, P., Horrocks, I., Hubauer, T., Ioannidis, Y., Jiménez-Ruiz, E., Kharlamov, E., Kllapi, H., Klüwer, J., Koubarakis, M., Lamparter, S., Möller, R., Neuenstadt, C., Nordtveit, T., Özcep, O., Rodriguez Muro, M., Roshchin, M., Ruzzi, M., Savo, F., Schmidt, M., Soylu, A., Waaler, A., Zheleznyakov, D.: The Optique Project: Towards OBDA Systems for Industry (Short Paper). In: OWL Experiences and Directions Workshop (OWLED) (2013)Google Scholar
  38. 38.
    Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontology visualization methods - A survey. ACM Computing Surveys 39(4), 10:1–10:43 (2007)Google Scholar
  39. 39.
    Skjæveland, M.G., Lian, E.H., Horrocks, I.: Publishing the Norwegian Petroleum Directorate’s FactPages as Semantic Web Data. To be published in the Proceedings of the International Semantic Web Conference (ISWC) (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ahmet Soylu
    • 1
  • Martin G. Skjæveland
    • 1
  • Martin Giese
    • 1
  • Ian Horrocks
    • 2
  • Ernesto Jimenez-Ruiz
    • 2
  • Evgeny Kharlamov
    • 2
  • Dmitriy Zheleznyakov
    • 2
  1. 1.Department of InformaticsUniversity of OsloNorway
  2. 2.Department of Computer ScienceUniversity of OxfordUK

Personalised recommendations