Multi-modal Active Visual Perception System for SPL Player Humanoid Robot

  • Francisco MartínEmail author
  • Carlos E. Agüero
  • José M. Cañas
  • Eduardo Perdices
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 252)


Robots detect and keep track of relevant objects in their environment to accomplish some tasks. Many of them are equipped with mobile cameras as the main sensors, process the images and maintain an internal representation of the detected objects. We propose a novel active visual memory that moves the camera to detect objects in robot’s surroundings and tracks their positions. This visual memory is based on a combination of multi-modal filters that efficiently integrates partial information. The visual attention subsystem is distributed among the software components in charge of detecting relevant objects. We demonstrate the efficiency and robustness of this perception system in a real humanoid robot participating in the RoboCup SPL competition.


robot soccer active vision multitarget tracker humanoid attention 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bar-Shalom, Y., Fortmann, T.E.: Tracking and data association. Mathematics in Science and Engineering, vol. 179. Academic Press Professional, Inc., San Diego (1987)Google Scholar
  2. 2.
    Coltin, B., Liemhetcharat, S., Mericli, C., Tay, J., Veloso, M.: Multi-humanoid world modeling in standard platform robot soccer. In: Proceedings of 2010 IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA, December 6-8 (2010)Google Scholar
  3. 3.
    Cox, I.J., Hingorani, S.L.: An efficient implementation of reid’s multiple hypothesis tracking algorithm and its evaluation for the purpose of visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(2), 138–150 (1996)CrossRefGoogle Scholar
  4. 4.
    Cox, I.J.: A review of statistical data association techniques for motion correspondence. International Journal of Computer Vision 10, 53–66 (1993)CrossRefGoogle Scholar
  5. 5.
    Czarnetzki, S., Kerner, S., Kruse, M.: Real-time active vision by entropy minimization applied to localization. In: Ruiz-del-Solar, J. (ed.) RoboCup 2010. LNCS (LNAI), vol. 6556, pp. 266–277. Springer, Heidelberg (2010)Google Scholar
  6. 6.
    DARPA. DARPA Urban Challenge,
  7. 7.
    The Robocup Federation. Robocup Standard Platform League (2010),
  8. 8.
    Guerrero, P., Ruiz-del-Solar, J., Romero, M.: Explicitly Task Oriented Probabilistic Active Vision for a Mobile Robot. In: Iocchi, L., Matsubara, H., Weitzenfeld, A., Zhou, C. (eds.) RoboCup 2008. LNCS (LNAI), vol. 5399, pp. 85–96. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Isard, M., Blake, A.: Icondensation: Unifying low-level and high-level tracking in a stochastic framework. In: Proc. 5th European Conf. Computer Vision, vol. 1, pp. 893–908 (1998)Google Scholar
  10. 10.
    Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: Robocup: The robot world cup initiative. In: ICJAI 1995 - Workshop on Entertainment and AI/ALIFE (1995)Google Scholar
  11. 11.
    Martín, F., Agüero, C., Cañas, J.M., Perdices, E.: Humanoid soccer player design. In: Papic, V. (ed.) Robot Soccer, pp. 67–100. INTECH (2010)Google Scholar
  12. 12.
    Martín, F., Rubio, L., Agüero, C., Cañas, J.M.: Effective visual attention for behavior-based robotic applications. In: Proceedings of the 2013 Workshop on Agentes Físicos (2013)Google Scholar
  13. 13.
    Federation of International Robot-soccer Association FIRA (2011),
  14. 14.
    Ratter, A., Hengst, B., Hall, B., White, B., Vance, B., Sammut, C., Claridge, D., Nguyen, H., Ashar, J., Pagnucco, M., Robinson, S., Zhu, Y.: rUNSWift Team Report 2010. Technical report, University of New Wales (2010)Google Scholar
  15. 15.
    Röfer, T., Laue, T., Müller, J., Fabisch, A., Feldpausch, F., Gillmann, K., Graf, C., de Haas, T.J., Härtl, A., Humann, A., Honsel, D., Kastner, P., Kastner, T., Könemann, C., Markowsky, B., Riemann, O.J.L., Wenk, F.: B-human team report and code release (2011),
  16. 16.
    Saffiotti, A., LeBlanc, K.: Active perceptual anchoring of robot behavior in a dynamic environment. In: Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), San Francisco, CA, pp. 3796–3802 (2000),
  17. 17.
    Schulz, D., Burgard, W., Fox, D., Cremers, A.B.: People tracking with mobile robots using sample-based joint probabilistic data association filters. I. J. Robotic Res. 22(2), 99–116 (2003)CrossRefGoogle Scholar
  18. 18.
    Seekircher, A., Laue, T., Röfer, T.: Entropy-based active vision for a humanoid soccer robot. In: Ruiz-del-Solar, J., Chown, E., Plöger, P.G. (eds.) RoboCup 2010. LNCS (LNAI), vol. 6556, pp. 1–12. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Stone, L.D., Corwin, T.L., Barlow, C.A.: Bayesian Multiple Target Tracking, 1st edn. Artech House, Inc., Norwood (1999)zbMATHGoogle Scholar
  20. 20.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). MIT Press (September 2005)Google Scholar
  21. 21.
    Universidad de León y Universidad Rovira i Virgili Universidad Rey Juan Carlos, SPITeam’s Application for qualification to RoboCup-2011 (2011)Google Scholar
  22. 22.
    Welch, G., Bishop, G.: An Introduction to the Kalman Filter. Technical report, University of North Carolina at Chapel Hill (2004)Google Scholar
  23. 23.
    Zickler, S., Laue, T., Birbach, O., Wongphati, M., Veloso, M.: SSL-Vision: The Shared Vision System for the RoboCup Small Size League. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS, vol. 5949, pp. 425–436. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Francisco Martín
    • 1
    Email author
  • Carlos E. Agüero
    • 1
  • José M. Cañas
    • 1
  • Eduardo Perdices
    • 1
  1. 1.Robotics Lab (GSyC)Rey Juan Carlos UniversityMadridSpain

Personalised recommendations