Advertisement

Gravitational Search Algorithm

  • Bo XingEmail author
  • Wen-Jing Gao
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 62)

Abstract

In this chapter, we present a gravitational search algorithm (GSA) which is based on the low of gravity. We first describe the general information of the science of gravity and the definition of mass in Sect. 22.1, respectively. Then, the fundamentals and performance of GSA are introduced in Sect. 22.2. Finally, Sect. 22.3 summarises in this chapter.

Keywords

Particle Swarm Optimization Wireless Mesh Network Inertial Mass Gravitational Mass Gravitational Search Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Afaq, H., & Saini, S. (2011). On the solutions to the travelling salesman problem using nature inspired computing techniques. International Journal of Computer Science Issues, 8, 326–334.Google Scholar
  2. Bababdani, B. M., & Mousavi, M. (2013). Gravitational search algorithm: a new feature selection method for QSAR study of anticancer potency of imidazo[4,5-b]pyridine derivatives. Chemometrics and Intelligent Laboratory Systems, 122, 1–11.CrossRefGoogle Scholar
  3. Bahrololoum, A., Nezamabadi-Pour, H., Bahrololoum, H., & Saeed, M. (2012). A prototype classifier based on gravitational search algorithm. Applied Soft Computing, 12, 819–825.CrossRefGoogle Scholar
  4. Barisal, A. K., Sahu, N. C., Prusty, R. C., & Hota, P. K. (2012). Short-term hydrothermal scheduling using gravitational search algorithm. IEEE 2nd International Conference on Power, Control and Embedded Systems, pp. 1–6.Google Scholar
  5. Behrang, M. A., Assareh, E., Ghalambaz, M., Assari, M. R., & Noghrehabadi, A. R. (2011). Forecasting future oil demand in Iran using GSA (gravitational search algorithm). Energy, 36, 5649–5654.CrossRefGoogle Scholar
  6. Chatterjee, A., Mahanti, G. K., & Pathak, N. (2010). Comparative performance of gravitational search algorithm and modified particle swarm optimization algorithm for synthesis of thinned scanned concentric ring array antenna. Progress in Electromagnetics Research B, 25, 331–348.CrossRefGoogle Scholar
  7. Chatterjee, A., Ghoshal, S. P., & Mukherjee, V. (2012). A maiden application of gravitational search algorithm with wavelet mutation for the solution of economic load dispatch problems. International Journal of Bio-Inspired Computation, 4, 33–46.CrossRefGoogle Scholar
  8. Chen, H., Li, S., & Tang, Z. (2011). Hybrid gravitational search algorithm with random-key encoding scheme combined with simulated annealing. International Journal of Computer Science and Network Security, 11, 208–217.zbMATHGoogle Scholar
  9. David, R.-C., Precup, R.-E., Petriu, E. M., Rădac, M.-B., & Preitl, S. (2013). Gravitational search algorithm-based design of fuzzy control systems with a reduced parametric sensitivity. Information Sciences, 247, 154–173. doi:http://dx.doi.org/10.1016/j.ins.2013.05.035.
  10. Doraghinejad, M., Nezamabadi-pour, H., & Mahani, A. (2013). Channel assignment in multi-radio wireless mesh networks using an improved gravitational search algorithm. Journal of Network and Computer Applications. doi:http://dx.doi.org/10.1016/j.jnca.2013.04.007.
  11. Duman, S., Güvenç, U., Sönmez, Y., & Yörükeren, N. (2012). Optimal power flow using gravitational search algorithm. Energy Conversion and Management, 59, 86–95.CrossRefGoogle Scholar
  12. Eslami, M., Shareef, H., Mohamed, A., & Khajehzadeh, M. (2012a). Gravitational search algorithm for coordinated design of PSS and TCSC as damping controller. Journal of Central South University of Technology, 19, 923–932.CrossRefGoogle Scholar
  13. Eslami, M., Shareef, H., Mohamed, A., & Khajehzadeh, M. (2012b). PSS and TCSC damping controller coordinated design using GSA. Energy Procedia, 14, 763–769.CrossRefGoogle Scholar
  14. Gao, S., Chai, H., Chen, B., & Yang, G. (2013). Hybrid gravitational search and clonal selection algorithm for global optimization. In Tan, Y., Shi, Y. & Mo, H. (Eds.), Advances in Swarm Intelligence, LNCS 7929, (pp. 1–10). Hybrid gravitational search and clonal selection algorithm for global optimization: Springer.Google Scholar
  15. Gauci, M., Dodd, T. J., & Groß, R. (2012). Why ‘GSA: a gravitational search algorithm’ is not genuinely based on the law of gravity. Natural Computing, 11, 719–720. doi: 10.1007/s11047-012-9322-0.Google Scholar
  16. Ghalambaz, M., Noghrehabadi, A. R., Behrang, M. A., Assareh, E., Ghanbarzadeh, A., & Hedayat, N. (2011). A hybrid neural network and gravitational search algorithm (HNNGSA) method to solve well known Wessinger’s equation. World Academy of Science, Engineering and Technology, 73, 803–807.Google Scholar
  17. Ghasemi, A., Shayeghi, H., & Alkhatib, H. (2013). Robust design of multimachine power system stabilizers using fuzzy gravitational search algorithm. Electrical Power and Energy Systems, 51, 190–200.CrossRefGoogle Scholar
  18. Güvenç, U., Sönmez, Y., Duman, S., & Yörükeren, N. (2012). Combined economic and emission dispatch solution using gravitational search algorithm. Scientia Iranica D, 19, 1754–1762.CrossRefGoogle Scholar
  19. Han, X., & Chang, X. (2012a). A chaotic digital secure communication based on a modified gravitational search algorithm filter. Information Sciences, 208, 14–27.CrossRefGoogle Scholar
  20. Han, X., & Chang, X. (2012b). Chaotic secure communication based on a gravitational search algorithm filter. Engineering Applications of Artificial Intelligence, 25, 766–774.CrossRefGoogle Scholar
  21. Hatamlou, A., Abdullah, S., & Nezamabadi-Pour, H. (2011). Application of gravitational search algorithm on data clustering. Rough Sets and Knowledge Technology, LNCS 6954, (pp. 337–346). Berlin: Springer.Google Scholar
  22. Hatamlou, A., Abdullah, S., & Nezamabadi-Pour, H. (2012). A combined approach for clustering based on K-means and gravitational search algorithms. Swarm and Evolutionary Computation, 6, 47–52. doi: 10.1016/j.swevo.2012.02.003.Google Scholar
  23. Ju, F.-Y., & Hong, W.-C. (2013). Application of seasonal SVR with chaotic gravitational search algorithm in electricity forecasting. Applied Mathematical Modelling, 37, p. 23. doi:http://dx.doi.org/10.1016/j.apm.2013.05.016.
  24. Khajehzadeh, M., & Eslami, M. (2012). Gravitational search algorithm for optimization of retaining structures. Indian Journal of Science and Technology, 5, 1821–1827.Google Scholar
  25. Khajehzadeh, M., Taha, M. R., El-Shafie, A., & Eslami, M. (2012). A modified gravitational search algorithm for slope stability analysis. Engineering Applications of Artificial Intelligence, 25, 1589–1597. doi: 10.1016/j.engappai.2012.01.011.
  26. Kumar, J. V., Kumar, D. M. V., & Edukondalu, K. (2013). Strategic bidding using fuzzy adaptive gravitational search algorithm in a pool based electricity market. Applied Soft Computing, 13, 2445–2455.CrossRefGoogle Scholar
  27. Lez-Álvarez, D. L. G., Vega-Rodríguez, M. A., Gómez-Pulido, J. A., & Sánchez-Pérez, J. M. (2013). Comparing multiobjective swarm intelligence metaheuristics for DNA motif discovery. Engineering Applications of Artificial Intelligence, 26, 314–326.CrossRefGoogle Scholar
  28. Li, P., & Duan, H. (2012). Path planning of unmanned aerial vehicle based on improved gravitational search algorithm. Science China Technological Sciences, 55, 2712–2719. doi: 10.1007/s11431-012-4890-x.Google Scholar
  29. Li, C., & Zhou, J. (2011). Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm. Energy Conversion and Management, 52, 374–381.CrossRefGoogle Scholar
  30. Li, C., Zhou, J., Xiao, J., & Xiao, H. (2012). Parameters identification of chaotic system by chaotic gravitational search algorithm. Chaos, Solitons & Fractals, 45, 539–547.CrossRefGoogle Scholar
  31. Li, C., Zhou, J., Xiao, J., & Xiao, H. (2013). Hydraulic turbine governing system identification using T–S fuzzy model optimized by chaotic gravitational search algorithm. Engineering Applications of Artificial Intelligence, 26, 2073–2082. doi:http://dx.doi.org/10.1016/j.engappai.2013.04.002.
  32. Mallick, S., Ghoshal, S. P., Acharjee, P., & Thakur, S. S. (2013). Optimal static state estimation using improved particle swarm optimization and gravitational search algorithm. Electrical Power and Energy Systems, 52, 254–265.CrossRefGoogle Scholar
  33. Mondal, S., Bhattacharya, A., & Dey, S. H. N. (2013). Multi-objective economic emission load dispatch solution using gravitational search algorithm and considering wind power penetration. Electrical Power and Energy Systems, 44, 282–292.CrossRefGoogle Scholar
  34. Niknam, T., Golestaneh, F., & Malekpour, A. (2012). Probabilistic energy and operation management of a microgrid containing wind/photovoltaic/fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational search algorithm. Energy, 43, 427–437.CrossRefGoogle Scholar
  35. Nobahari, H., Nikusokhan, M., & Siarry, P. (2011, June 14–15). Non-dominated sorting gravitational search algorithm. International conference on swarm intelligence (ICSI) (pp. 1–10). Cergy, France. Google Scholar
  36. Papa, J. P., Pagnin, A., Schellini, S. A., Spadotto, A., Guido, R. C., Ponti, M., Chiachia, G., & Falcão, A. X. (2011). Feature selection through gravitational search algorithm. IEEE International Conference on Acoustics, Speech (ICASSP), pp. 2052–2055.Google Scholar
  37. Precup, R.-E., David, R.-C., Petriu, E. M., Rădac, M.-B., Preitl, S., & Fodor, J. (2013). Evolutionary optimization-based tuning of low-cost fuzzy controllers for servo systems. Knowledge-Based Systems, 38, 74–84. doi: 10.1016/j.knosys.2011.07.006.Google Scholar
  38. Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: A gravitational search algorithm. Information Sciences, 179, 2232–2248.CrossRefzbMATHGoogle Scholar
  39. Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2010). BGSA: Binary gravitational search algorithm. Natural Computing, 9, 727–745.CrossRefzbMATHMathSciNetGoogle Scholar
  40. Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2011). Filter modeling using gravitational search algorithm. Engineering Applications of Artificial Intelligence, 24, 117–122.CrossRefGoogle Scholar
  41. Ricci, F. (1998). The search for gravitational waves: an experimental physics challenge. Contemporary Physics, 39, 107–135.CrossRefGoogle Scholar
  42. Roy, P. K. (2013). Solution of unit commitment problem using gravitational search algorithm. Electrical Power and Energy Systems, 53, 85–94.CrossRefGoogle Scholar
  43. Roy, P. K., Mandal, B., & Bhattacharya, K. (2012). Gravitational search algorithm based optimal reactive power dispatch for voltage stability enhancement. Electric Power Components and Systems, 40, 956–976.CrossRefGoogle Scholar
  44. Sarafrazi, S., Nezamabadi-Pour, H., & Saryazdi, S. (2011). Disruption: A new operator in gravitational search algorithm. Scientia Iranica D, 18, 539–548.CrossRefGoogle Scholar
  45. Schutz, B. (2003). Gravity from the ground up, The Edinburgh Building, Cambridge CB2 8RU. UK: Cambridge University Press. ISBN 13 978-0-511-33696-6.Google Scholar
  46. Seljanko, F. (2011, June 20–23). Hexapod walking robot gait generation using genetic-gravitational hybrid algorithm. IEEE 15th International Conference on Advanced Robotics (pp. 253–258), Tallinn University of Technology, Tallinn, Estonia.Google Scholar
  47. Serway, R. A., & Jewett, J. W. (2014). Physics for scientists and engineers with modern physics. Boston: Brooks/Cole CENAGE Learning. ISBN 978-1-133-95405-7.Google Scholar
  48. Shaw, B., Mukherjee, V., & Ghoshal, S. P. (2012). A novel opposition-based gravitational search algorithm for combined economic and emission dispatch problems of power systems. Electrical Power and Energy Systems, 35, 21–33.CrossRefGoogle Scholar
  49. Yin, M., Hu, Y., Yang, F., Li, X., & Gu, W. (2011). A novel hybrid K-harmonic means and gravitational search algorithm approach for clustering. Expert Systems with Applications, 38, 9319–9324.CrossRefGoogle Scholar
  50. Zhang, W., Niu, P., Li, G., & Li, P. (2013). Forecasting of turbine heat rate with online least squares support vector machine based on gravitational search algorithm. Knowledge-Based Systems, 39, 34–44.CrossRefGoogle Scholar
  51. Zhao, W. (2011). Adaptive image enhancement based on gravitational search algorithm. Procedia Engineering, 15, 3288–3292.CrossRefGoogle Scholar
  52. Zibanezhad, B., Yamanifar, K., Sadjady, R. S., & Rastegari, Y. (2011). Applying gravitational search algorithm in the QoS-based Web service selection problem. Journal of Zhejiang University —Science C (Computers & Electronics), 12, 730–742.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Faculty of Engineering, Built Environment and Information Technology, Department of Mechanical Engineering and Aeronautical EngineeringUniversity of PretoriaPretoriaSouth Africa
  2. 2.Department of New Product DevelopmentMeiyuan Mould Design and Manufacturing Co., Ltd.XianghePeople’s Republic of China

Personalised recommendations