Emerging Biology-based CI Algorithms

Part of the Intelligent Systems Reference Library book series (ISRL, volume 62)


In this chapter, a group of (more specifically 56 in total) emerging biology-based computational intelligence (CI) algorithms are introduced. We first, in Sect. 17.1, describe the organizational structure of this chapter. Then, from Sects. 17.2 to 17.57, each section is dedicated to a specific algorithm which falls within this category, respectively. The fundamentals of each algorithm and their corresponding performances compared with other CI algorithms can be found in each associated section. Finally, the conclusions drawn in Sect. 17.58 closes this chapter.


  1. Abdullah, S., Turabieh, H., & Mccollum, B. (2009). A hybridization of electromagnetic-like mechanism and great deluge for examination timetabling problems. Hybrid Metaheuristics, LNCS (Vol. 5818, pp. 60–72). Berlin: Springer.Google Scholar
  2. Abernethy, B., Kippers, V., Hanrahan, S. J., Pandy, M. G., Mcmanus, A. M., & Mackinnon, L. (2013). Biophysical foundations of human movement,, Champaign: Human Kinetics. ISBN 978-1-4504-3165-1.Google Scholar
  3. Acebo, E. D., & Rosa, J. L. D. L. (2008, April 1–4). Introducing bar systems: A class of swarm intelligence optimization algorithms. In AISB 2008 Symposium on Swarm Intelligence Algorithms and Applications, University of Aberdeen (pp. 18–23). The Society for the Study of Artificial Intelligence and Simulation of Behaviour.Google Scholar
  4. Acquaah, G. (2012). Principles of plant genetics and breeding. River Street: Wiley. ISBN 978-0-470-66476-6.Google Scholar
  5. Adair, J. (2007). Develop your leadership skills. London: Kogan Page Limited. ISBN 0-7494-4919-5.Google Scholar
  6. Adamatzky, A., & Oliveira, P. P. B. D. (2011). Brazilian highways from slime mold’s point of view. Kybernetes, 40, 1373–1394.Google Scholar
  7. Adams, S. (2004). World War I. London: Dorling Kindersley Limited. ISBN 1-4053-0298-4.Google Scholar
  8. Ahrari, A., & Atai, A. A. (2010). Grenade explosion method: A novel tool for optimization of multimodal functions. Applied Soft Computing, 10, 1132–1140.Google Scholar
  9. Ahrari, A., Shariat-Panahi, M., & Atai, A. A. (2009). GEM: a novel evolutionary optimization method with improved neighborhood search. Applied Mathematics and Computation, 210, 379–386.MathSciNetGoogle Scholar
  10. Al-Milli, N. R. (2010). Hybrid genetic algorithms with great deluge for course timetabling. International Journal of Computer Science and Network Security, 10, 283–288.Google Scholar
  11. Alatas, B. (2011). Photosynthetic algorithm approaches for bioinformatics. Expert Systems with Applications, 38, 10541–10546.Google Scholar
  12. Aleksiev, A. S., Longdon, B., Christmas, M. J., Sendova-Franks, A. B., & Franks, N. R. (2008). Individual and collective choice: Parallel prospecting and mining in ants. Naturwissenschaften, 95, 301–305.Google Scholar
  13. Alexiou, A., & Vlamos, P. (2012). A cultural algorithm for the representation of mitochondrial population. Advances in Artificial Intelligence, 2012, 1–7.Google Scholar
  14. Alonso, C., Herrera, C. M., & Ashman, T.-L. (2012). A piece of the puzzle: A method for comparing pollination quality and quantity across multiple species and reproductive events. New Phytologist, 193, 532–542.Google Scholar
  15. Aman, B. (2009). Spatial dynamic structures and mobility in computation. Unpublished Doctoral Thesis, Romania Academy.Google Scholar
  16. Anandaraman, C. (2011). An improved sheep flock heredity algorithm for job shop scheduling and flow shop scheduling. International Journal of Industrial Engineering Computations, 2, 749–764.Google Scholar
  17. Anandaraman, C., Sankar, A. M., & Natarajan, R. (2012). Evolutionary approaches for scheduling a flexible manufacturing system with automated guided vehicles and robots. International Journal of Industrial Engineering Computations, 3, 627–648.Google Scholar
  18. Ardjmand, E., & Amin-naseri, M. R. (2012). Unconscious search: A new structured search algorithm for solving continuous engineering optimization problems based on the theory of psychoanalysis. In Y. Tan, Y. Shi, & Z. Ji (Eds.), ICSI 2012, Part I, LNCS (Vol. 7331, pp. 233–242). Berlin: Springer.Google Scholar
  19. Ashby, L. H. & Yampolskiy, R. V. (2011). Genetic algorithm and wisdom of artificial crowds algorithm applied to light up. In 16th International Conference on Computer Games (GAMES 2011), (pp. 27–32). IEEE.Google Scholar
  20. Badgerow, J. P., & Hainsworth, F. R. (1981). Energy savings through formation flight? A re-examination of the vee formation. Journal of Theoretical Biology, 93, 41–52.Google Scholar
  21. Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., et al. (2008). Empirical investigation of starling flock: A benchmark study in collective animal behaviour. Animal Behaviour, 76, 201–215.Google Scholar
  22. Bater, L. (2007). Incredible insects: Answers to questions about miniature marvels. Vero Beach: Rourke Publishing LLC. Post Office Box 3328. ISBN 978-1-60044-348-0.Google Scholar
  23. Batista, L. D. S., Guimarães, F. G., & Ramírez, J. A. (2009). A distributed clonal selection algorithm for optimization in electromagnetics. IEEE Transactions on Magnetics, 45, 1598–1601.Google Scholar
  24. Bell, W. J., Roth, L. M., & Nalepa, C. A. (2007). Cockroaches: Ecology, behavior, and natural history. Maryland: The Johns Hopkins University Press. ISBN 978-0-8018-8616-4.Google Scholar
  25. Bellaachia, A., & Bari, A. (2012). Flock by leader: A novel machine learning biologically inspired clustering algorithm. In Y. Tan, Y. Shi, & Z. Ji (Eds.), ICSI 2012, Part I, LNCS (Vol. 7332, pp. 117–126). Berlin: Springer.Google Scholar
  26. Bhugra, D., Ruiz, P., & Gupta, S. (2013). Leadership in psychiatry. Hoboken: Wiley. ISBN 978-1-119-95291-6.Google Scholar
  27. Bolstad, T. M. (2012). Brownian motion. Department of Physics and Technology, University of Bergen.Google Scholar
  28. Brierley, A. S., & Cox, M. J. (2010). Shapes of krill swarms and fish schools emerge as aggregation members avoid predators and access oxygen. Current Biology, 20, 1758–1762.Google Scholar
  29. Brownlee, J. (2007). Clonal selection algorithms. CIS Technical Report, 070209A, 1–13.Google Scholar
  30. Burke, E., Bykov, Y., Newall, J., & Petrovic, S. (2004). A time-predefined local search approach to exam timetabling problems. IIE Transactions, 3, 509–528.Google Scholar
  31. Campelo, F., Guimarães, F. G., Igarashi, H., & Ramírez, J. A. (2005). A clonal selection algorithm for optimization in electromagnetics. IEEE Transactions on Magnetics, 41, 1736–1739.Google Scholar
  32. Cao, C.-H., Wang, L.-M., Han, C.-Y., Zhao, D.-Z., & Zhang, B. (2012). Geese PSO optimization in geometric constraint solving. Information Technology Journal, 11, 504.Google Scholar
  33. Carlson, N. R. (2013). Physiology of behavior. New Jersey: Pearson Education, Inc. ISBN 978-0-205-23948-1.Google Scholar
  34. Carpentier, R. (2011). Photosynthesis research protocols. New York: Springer. ISBN 978-1-60671-924-6.Google Scholar
  35. Castro, L. N. D., & Zuben, F. J. V. (2000, July). The clonal selecton algorithm with engineering applications. In Workshop on Artificial Immune Systems and Their Applications, Las Vegas, USA, pp. 1–7.Google Scholar
  36. Castro, L. N. D., & Zuben, F. J. V. (2002). Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation, 6, 239–251.Google Scholar
  37. Chalmers, D. J. (2010). The character of consciousness. USA: Oxford University Press. ISBN 978-0-195-31111-2.Google Scholar
  38. Chandrasekaran, M., Asokan, P., Kumanan, S., & Balamurugan, T. (2006). Sheep flocks heredity model algorithm for solving job shop scheduling problems. International Journal of Applied Management and Technology, 4, 79–100.Google Scholar
  39. Chapman, R. F. (2013). The insects: structure and function. In S. J. Simpson & A. E. Douglas (Eds.). New York: Cambridge University Press. ISBN 978-0-521-11389-2.Google Scholar
  40. Chen, C.-C., & Lee, Y.-T. (Eds.). (2008). Leadership and management in China: Philosophies, theories, and practices. Cambridge: Cambridge University Press. ISBN 978-0-511-40909-7.Google Scholar
  41. Chen, K., Li, T., & Cao, T. (2006). Tribe-PSO: A novel global optimization algorithm and its application in molecular docking. Chemometrics and Intelligent Laboratory Systems, 82, 248–259.Google Scholar
  42. Chen, T. (2009). A simulative bionic intelligent optimization algorithm: Artificial searching swarm algorithm and its performance analysis. In IEEE International Joint Conference on Computational Sciences and Optimization (CSO) (pp. 864–866).Google Scholar
  43. Chen, T., Liu, Z., Shu, Q., & Zhang, L. (2009a). On the analysis of performance of the improved artificial searching swarm algorithm. In IEEE 2nd International Conference on Intelligent Networks and Intelligent Systems (ICINIS) (pp. 502–506).Google Scholar
  44. Chen, T., Pang, L., Du, J., Liu, Z., & Zhang, L. (2009b). Artificial searching swarm algorithm for solving constrained optimization problems. In IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS) (pp. 562–565) .Google Scholar
  45. Chen, T., Wang, Y., & Li, J. (2012). Artificial tribe algorithm and its performance analysis. Journal of Software, 7, 651–656.Google Scholar
  46. Chen, T., Wang, Y., Pang, L., Liu, Z., & Zhang, L. (2010a). An improved artificial searching swarm algortihm and its performance analysis. In IEEE 2nd International Conference on Computer Modeling and Simulation (ICCMS) (pp. 260–263).Google Scholar
  47. Chen, T., Zhang, L., Liu, Z., Pang, L., & Shu, Q. (2009c). On the analysis of performance of the artificial searching swarm algorithm. In IEEE 5h International Conference on Natural Computation (ICNC) (pp. 365–368).Google Scholar
  48. Chen, Y., Cui, Z., & Zeng, J. (2010b, July 7–9). Structural optimization of lennard-jones clusters by hybrid social cognitive optimization algorithm. In F. Sun, Y. Wang, J. Lu, B. Zhang, W. Kinsner, & L. A. Zadeh (Eds.), In 9th International Conference on Cognitive Informatics (ICCI) (pp. 204–208). IEEE. Beijing, China.Google Scholar
  49. Chen, Z., & Tang, H. (2010). Cockroach swarm optimization. In IEEE 2nd International Conference on Computer Engineering and Technology (ICCET) (pp. 652–655).Google Scholar
  50. Chen, Z., & Tang, H. (2011). Cockroach swarm optimization for vehicle routing problems. Energy Procedia, 13, 30–35.Google Scholar
  51. Cheng, L., Xu, Y.-H., Zhang, H.-B., Qian, Z.-L., & Feng, G. (2010). New bionics optimization algorithm: food truck-cockroach swarm optimization algorithm (in Chinese). Computer Engineering, 36, 208–209.Google Scholar
  52. Ciobanu, G., Desai, R., & Kumar, A. (2003). Membrane systems and distributed computing. In G. Păun (Ed.), WMC-CdeA 2002, LNCS (Vol. 2597, pp. 187–202). Berlin: Springer.Google Scholar
  53. Civicioglu, P. (2012). Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Computers and Geosciences, 46, 229–247.Google Scholar
  54. Civicioglu, P. (2013). Backtracking search optimization algorithm for numerical optimization problems. Applied Mathematics and Computation, 219, 8121–8144.MathSciNetGoogle Scholar
  55. Coelho, L. D. S., & Bernert, D. L. D. A. (2009). PID control design for chaotic synchronization using a tribes optimization approach. Chaos, Solitons and Fractals, 42, 634–640.Google Scholar
  56. Conradt, L., & List, C. (2009). Group decisions in humans and animals: A survey. Philosophical Transaction of the Royal Society B, 364, 719–742.Google Scholar
  57. Cordoni, G. (2009). Social play in captive wolves (Canis lupus): Not only an immature affair. Behaviour, 146, 1363–1385.Google Scholar
  58. Couzin, I. D. (2009). Collective cognition in animal groups. Trends in Cognitive Sciences, 13, 36–43.Google Scholar
  59. Couzin, I. D., Krause, J., Franks, N. R., & Levin, S. A. (2005). Effective leadership and decision-making making in animal groups on the move. Nature, 434, 513–516.Google Scholar
  60. Creel, S. (1997). Cooperative hunting and group size: Assumptions and currencies. Animal Behaviour, 54, 1319–1324.Google Scholar
  61. Cuevas, E., Cienfuegos, M., Zaldívar, D., & Pérez-Cisneros, M. (2013). A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Systems with Applications. doi: http://dx.doi.org/10.1016/j.eswa.2013.05.041.
  62. Cuevas, E., Zaldívar, D., & Pérez-Cisneros, M. (2013b). A swarm optimization algorithm for multimodal functions and its application in multicircle detection. Mathematical Problems in Engineering, 2013, 1–22.Google Scholar
  63. Cui, X., Gao, J., & Potok, T. E. (2006). A flocking based algorithm for document clustering analysis. Journal of Systems Architecture, 52, 505–515.Google Scholar
  64. Cui, Y., Guo, R., & Guo, D. (2009). A naïve five-element string algorithm. Journal of Software, 4, 925–934.Google Scholar
  65. Cui, Y. H., Guo, R., Rao, R. V., & Savsani, V. J. (2008, December 15–17) Harmony element algorithm: A naive initial searching range. In International Conference on Advances in Mechanical Engineering, S.V. (pp. 1–6). National Institute of Technology, Gujarat, India.Google Scholar
  66. Cui, Z., & Cai, X. (2010, July 7–9). Using social cognitive optimization algorithm to solve nonlinear equations. In F. Sun, Y. Wang, J. Lu, B. Zhang, W. Kinsner & L. A. Zadeh (Eds.), In 9th International Conference on Cognitive Informatics (ICCI) (pp. 199–203). Beijing, China. IEEE.Google Scholar
  67. Cui, Z., Cai, X., & Shi, Z. (2011). Social emotional optimization algorithm with group decision. Scientific Research and Essays, 6, 4848–4855.Google Scholar
  68. Cui, Z., Shi, Z., & Zeng, J. (2010). Using social emotional optimization algorithm to direct orbits of chaotic systems. In B. K. Panigrahi, S. Das, P. N. Suganthan & S. S. Dash (Eds.), Swarm, Evolutionary, and Memetic Computing, LNCS (Vol. 6466, pp. 389–395). Berlin: Springer.Google Scholar
  69. Cui, Z., Xu, Y., & Zeng, J. (2012). Social emotional optimization algorithm with random emotional selection strategy. In R. Parpinelli (Ed.), Theory and New Applications of Swarm Intelligence, Chap. 3 (pp. 33–50). Croatia: InTech. ISBN 978-953-51-0364-6.Google Scholar
  70. Cummins, B., Cortez, R., Foppa, I. M., Walbeck, J., & Hyman, J. M. (2012). A spatial model of mosquito host-seeking behavior. PLoS Computational Biology, 8, 1–13.MathSciNetGoogle Scholar
  71. Cutts, C. J., & Speakman, J. R. (1994). Energy savings in formation flight of pink-footed geese. Journal of Experimental Biology, 189, 251–261.Google Scholar
  72. Dai, C., Chen, W., & Zhu, Y. (2006, November). Seeker optimization algorithm. In IEEE International Conference on Computational Intelligence and Security (pp. 225–229). Guangzhou, China.Google Scholar
  73. Dai, C., Chen, W., Song, Y., & Zhu, Y. (2010a). Seeker optimization algorithm: A novel stochastic search algorithm for global numerical optimization. Journal of Systems Engineering and Electronics, 21, 300–311.Google Scholar
  74. Dai, C., Chen, W., & Zhu, Y. (2010b). Seeker optimization algorithm for digital IIR filter design. IEEE Transactions on Industrial Electronics, 57, 1710–1718.Google Scholar
  75. Dai, C., Chen, W., Zhu, Y., & Zhang, X. (2009a). Reactive power dispatch considering voltage stability with seeker optimization algorithm. Electric Power Systems Research, 79, 1462–1471.Google Scholar
  76. Dai, C., Chen, W., Zhu, Y., & Zhang, X. (2009b). Seeker optimization algorithm for optimal reactive power dispatch. IEEE Transactions on Power Systems, 24, 1218–1231.Google Scholar
  77. Dai, C., Zhu, Y., & Chen, W. (2007). Seeker optimization algorithm. In Y. Wang, Y. Cheung & H. Liu (Eds.), CIS 2006, LNAI (Vol. 4456. pp. 167–176). Berlin: Springer.Google Scholar
  78. Dai, S., Zhuang, P., & Xiang, W. (2013). GSO: An improved PSO based on geese flight theory. In Y. Tan, Y. Shi, & H. Mo (Eds.), Advances in Swarm Intelligence, ICSI 2013, Part I, LNCS (Vol. 7928, pp. 87–95). Berlin: Springer.Google Scholar
  79. Daskin, A., & Kais, S. (2011). Group leaders optimization algorithm. Molecular Physics, 109, 761–772.Google Scholar
  80. Davendra, D., & Zelinka, I. (2009). Optimization of quadratic assignment problem using self-organinsing migrating algorithm. Computing and Informatics, 28, 169–180.Google Scholar
  81. Davendra, D., Zelinka, I., Bialic-Davendra, M., Senkerik, R., & Jasek, R. (2013). Discrete self-organising migrating algorithm for flow-shop scheduling with no-wait makespan. Mathematical and Computer Modelling, 57, 100–110.MathSciNetGoogle Scholar
  82. Digalakis, J. G., & Margaritis, K. G. (2002). A multipopulation cultural algorithm for the electrical generator scheduling problem. Mathematics and Computers in Simulation, 60, 293–301.MATHMathSciNetGoogle Scholar
  83. Ding, S., & Li, S. (2009). Clonal selection algorithm for feature selection and parameters optimization for support vector machines. In IEEE 2nd International Symposium on Knowledge Acquisition and Modeling (pp. 17–20).Google Scholar
  84. Du, Y., Li, H., Pei, Z., & Peng, H. (2005). Intelligent spider’s algorithm of search engine based on keyword. ECTI Transactions on Computer and Information Theory, 1, 40–49.Google Scholar
  85. Dubinsky, Z. (Ed.). (2013). Photosynthesis. InTech: Croatia. ISBN 978-953-51-1161-0.Google Scholar
  86. Dueck, G. (1993). New optimization heuristics: The great deluge algorithm and the record-to-record travel. Journal of Computational Physics, 104, 86–92.MATHGoogle Scholar
  87. Duman, E., Uysal, M., & Alkaya, A. F. (2012). Migrating birds optimization: A new metaheuristic approach and its performance on quadratic assignment problem. Information Sciences, 217, 65–77.MathSciNetGoogle Scholar
  88. Durrett, R. (1984). Brownian motion and martingales in analysis. Belmont: Wadsworth Advanced Books and Software, A Division of Wadsworth, Inc. ISBN 0-534-03065-3.Google Scholar
  89. Ebensperger, L. A. (2001). A review of the evolutionary causes of rodent group-living. Acta Theriologica, 46, 115–144.Google Scholar
  90. Eckstein, M. P., Das, K., Pham, B. T., Peterson, M. F., Abbey, C. K., Sy, J. L., et al. (2012). Neural decoding of collective wisdom with multi-brain computing. NeuroImage, 59, 94–108.Google Scholar
  91. Feng, X., Lau, F. C. M., & Gao, D. (2009). A new bio-inspired approach to the traveling salesman problem. In J. Zhou (Ed.), Complex 2009, Part II, LNICST, (Vol. 5, pp. 1310–1321). Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.Google Scholar
  92. Frank, S. A. (1998). Foundations of social evolution. New Jersey: Princeton University Press. ISBN 0-691-05933-0.Google Scholar
  93. Fuller, T. K., Mech, L. D., & Cockrane, J. F. (2003). Wolf population dynamics. In L. D. Mech & L. Boitani (Eds.), Wolves: Behavior, Ecology and Conservation (pp. 161–191). Chicago: University of Chicago Press.Google Scholar
  94. Gamlin, L. (2009). Evolution. New York: Dorling Kindersley Limited. ISBN 978-0-7566-5028-5.Google Scholar
  95. Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation, 17, 4831–1845.MATHMathSciNetGoogle Scholar
  96. Gandomi, A. H., Yang, X.-S., Talatahari, S., & Deb, S. (2012). Coupled eagle strategy and differential evolution for unconstrained and constrained global optimization. Computers and Mathematics with Applications, 63, 191–200.MATHMathSciNetGoogle Scholar
  97. Gao, S., Chai, H., Chen, B., & Yang, G. (2013). Hybrid gravitational search and clonal selection algorithm for global optimization. In Y. Tan, Y. Shi & H. Mo (Eds.), Advances in Swarm Intelligence, LNCS (Vol. 7929, pp. 1–10). Hybrid gravitational search and clonal selection algorithm for global optimization. Berlin: Springer.Google Scholar
  98. Ghatei, S., Khajei, R. P., Maman, M. S., & Meybodi, M. R. (2012). A modified PSO using great deluge algorithm for optimization. Journal of Basic and Applied Scientific Research, 2, 1362–1367.Google Scholar
  99. Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., & Verlan, S. (Eds.). (2012). Membrane computing. Berlin: Springer. ISBN 978-3-642-28023-8.MATHGoogle Scholar
  100. Giraldeau, L.-A., Soos, C., & Beauchamp, G. (1994). A test of the producer-scrounger foraging game in captive flocks of spice finches, Lonchura punctulata. Behavioral Ecology and Sociobiology, 34, 251–256.Google Scholar
  101. Goffredo, S., & Dubinsky, Z. (2014). The Mediterranean Sea: Its history and present challenges. New York: Springer. ISBN 978-94-007-6703-4.Google Scholar
  102. Gofman, Y. (2012). Computational studies of the interactions of biologically active peptides with membrane. Unpublished Doctoral Thesis, Universität Hamburg.Google Scholar
  103. Gross, R. (2014). Psychology: The science of mind and behaviour. London: Hodder Education. ISBN 978-1-4441-0831-6.Google Scholar
  104. Gusset, M., & Macdonald, D. W. (2010). Group size effects in cooperatively breeding African wild dogs. Animal Behaviour, 79, 425–428.Google Scholar
  105. Hagler, G. (2013). Modelinig ships and space craft. Berlin: Springer. ISBN 978-1-4614-4595-1.Google Scholar
  106. Hasançebi, O., & Azad, S. K. (2012). An efficient metaheuristic algorithm for engineering optimization: SPOT. International Journal of Optimization in Civil Engineering, 2, 479–487.Google Scholar
  107. Havens, T. C., Spain, C. J., Salmon, N. G., & Keller, J. M. (2008, September 21–23). Roach infestation optimization. In IEEE Swarm Intelligence Symposium (pp. 1–7). St. Louis MO, USA.Google Scholar
  108. Heylighen, F. (1992). Evolution, selfishness and cooperation. Journal of Ideas, 2, 70–76.Google Scholar
  109. Hobbs, R. J., Higgs, E. S., & Hall, C. M. (2013). Novel ecosystems: Intervening in the new ecological world order. Hoboken: Wiley. ISBN 978-1-118-35422-3.Google Scholar
  110. Howell, D. C. (2014). Fundamental statistics for the behavioral sciences. Belmont: Cengage Learning. ISBN 978-1-285-07691-1.Google Scholar
  111. Irvine, E. (2013). Consciousness as a scientific concept: A philosophy of science perspective. Dordrecht: Springer. ISBN 978-94-007-5172-9.Google Scholar
  112. Ishdorj, T.-O. (2006). Membrane computing, neural inspirations, gene assembly in Ciliates. Unpublished Doctoral Thesis, University of Seville.Google Scholar
  113. Janecek, A., & Tan, Y. (2011). Swarm intelligence for non-negative matrix factorization. International Journal of Swarm Intelligence Research, 2, 12–34.Google Scholar
  114. Jelinek, R. (2013). Biomimetics: A molecular perspective. Berlin/Boston: Walter de Gruyter. ISBN 978-3-11-028117-0.Google Scholar
  115. Jonassen, T. M. (2006, June). Symbolic dynamics, the spider algorithm and finding certain real zeros of polynomials of high degree. In 8th International Mathematica Symposium (pp. 1–16). Avignon.Google Scholar
  116. Karci, A. (2007a). Human being properties of saplings growing up algorithm. In International Conference on Computational Cybernetics (ICCC) (pp. 227–232). IEEE.Google Scholar
  117. Karci, A. (2007b). Natural inspired computational intelligence method: saplings growing up algorithm. In International Conference on Computational Cybernetics (ICCC), pp. 221–226. IEEE.Google Scholar
  118. Karci, A. (2007c). Theory of saplings growing up algorithm. In Adaptive and Natural Computing Algorithms, LNCS (Vol. 4431, pp. 450–460). Berlin: Springer.Google Scholar
  119. Karci, A., & Alatas, B. (2006). Thinking capability of saplings growing up algorithm. In Intelligent Data Engineering and Automated Learning (IDEAL 2006), LNCS (Vol. 4224, pp. 386–393). Berlin: Springer.Google Scholar
  120. Kashan, A. H. (2009). League championship algorithm: a new algorithm for numerical function optimization. In IEEE International Conference of Soft Computing and Pattern Recognition (SoCPAR) (pp. 43–48).Google Scholar
  121. Kashan, A. H. (2011). An efficient algorithm for constrained global optimization and application to mechanical engineering design: League championship algorithm (LCA). Computer-Aided Design, 43, 1769–1792.Google Scholar
  122. Kashan, A. H., & Karimi, B. (2010, 18–23 July). A new algorithm for constrained optimization inspired by the sport league championships. In World Congress on Computational Intelligence (WCCI) (pp. 487–494). CCIB, Barcelona, Spain.Google Scholar
  123. Keller, L., & Gordon, É. (2009). The lives of ants (translated by James Grieve). Oxford: Oxford University Press Inc. ISBN 978–0–19–954186–7.Google Scholar
  124. Kim, H., & Ahn, B. (2001). A new evolutionary algorithm based on sheep flocks heredity model. In Conference on Communications, Computers and Signal Processing (pp. 514–517). IEEE.Google Scholar
  125. Kim, Y.-B. (2012). Distributed algorithms in membrane systems. Unpublished Doctoral Thesis, University of Auckland.Google Scholar
  126. King, A. J., Sueur, C., Huchard, E., & Cowlishaw, G. (2011). A rule-of-thumb based on social affiliation explains collective movements in desert baboons. Animal Behaviour, 82, 1337–1345.Google Scholar
  127. Krishnanand, K. R., Hasani, S. M. F., & Panigrahi, B. K. (2013). Optimal power flow solution using self-evolving brain–storming inclusive teaching-learning-based algorithm. In Y. Tan, Y. Shi, & H. Mo (Eds.), ICSI 2013, Part I, LNCS (Vol. 7928, pp. 338–345). Berlin: Springer.Google Scholar
  128. Kwasnicka, H., Markowska-Kaczmar, U., & Mikosik, M. (2011). Flocking behaviour in simple ecosystems as a result of artificial evolution. Applied Soft Computing, 11, 982–990.Google Scholar
  129. Lancaster, R., Butler, R. E. A., Lancaster, J. M., & Shimizu, T. (1998). Fireworks: Principles and practice. New York: Chemical Publishing Co., Inc. ISBN 0-8206-0354-6.Google Scholar
  130. Lee, D., & Quessy, S. (2003). Visual search is facilitated by scene and sequence familiarity in rhesus monkeys. Vision Research, 43, 1455–1463.Google Scholar
  131. Lemasson, B. H., Anderson, J. J., & Goodwin, R. A. (2009). Collective motion in animal groups from a neurobiological perspective: The adaptive benefits of dynamic sensory loads and selective attention. Journal of Theoretical Biology, 261, 501–510.MathSciNetGoogle Scholar
  132. Levin, S. A. (2013a). Encyclopedia of biodiversity. Oxford: Academic Press, Elsevier Inc. ISBN 978-0-12-384719-5.Google Scholar
  133. Levin, S. A. (2013b). Encyclopedia of biodiversity. Oxford: Academic Press, Elsevier Inc. ISBN 978-0-12-384719-5.Google Scholar
  134. Levin, S. A. (2013c). Encyclopedia of biodiversity. Oxford: Academic Press, Elsevier Inc. ISBN 978-0-12-384719-5.Google Scholar
  135. Levin, S. A. (2013d). Encyclopedia of biodiversity. Oxford: Academic Press, Elsevier Inc. ISBN 978-0-12-384719-5.Google Scholar
  136. Levin, S. A. (2013e). Encyclopedia of biodiversity. Oxford: Academic Press, Elsevier Inc. ISBN 978-0-12-384719-5.Google Scholar
  137. Levin, S. A. (2013f). Encyclopedia of biodiversity,. London: Academic Press, Elsevier Inc. ISBN 978-0-12-384719-5.Google Scholar
  138. Li, K., Torres, C. E., Thomas, K., Rossi, L. F., & Shen, C.-C. (2011). Slime mold inspired routing protocols for wireless sensor networks. Swarm Intelligence, 5, 183–223.Google Scholar
  139. Li, Y. (2010, October 22–24). Solving TSP by an ACO-and-BOA-based hybrid algorithm. In IEEE International Conference on Computer Application and System Modeling (ICCASM), (Vol. 12, pp. 189–192).Google Scholar
  140. Lihoreau, M., Costa, J. T., & Rivault, C. (2012). The social biology of domiciliary cockroaches: colony structure, kin recognition and collective decisions. Insectes Sociaux. doi:  10.1007/s00040-012-0234-x.
  141. Lihoreau, M., Deneubourg, J.-L., & Rivault, C. (2010). Collective foraging decision in a gregarious insect. Behavioral Ecology and Sociobiology, 64, 1577–1587.Google Scholar
  142. Lissaman, P. B. S., & Shollenberger, C. A. (1970). Formation flight of birds. Science, 168, 1003–1005.Google Scholar
  143. Liu, C., Yan, X., Liu, C., & Wu, H. (2011). The wolf colony algorithm and its application. Chinese Journal of Electronics, 20, 212–216.Google Scholar
  144. Liu, J. Y., Guo, M. Z., & Deng, C. (2006). Geese PSO: An efficient improvement to particle swarm optimization. Computer Science, 33, 166–168.Google Scholar
  145. Lu, Y., & Liu, X. (2011). A new population migration algorithm based on the chaos theory. In IEEE 2nd International Symposium on Intelligence Information Processing and Trusted Computing (IPTC) (pp. 147–10).Google Scholar
  146. Luo, X., Li, S., & Guan, X. (2010). Flocking algorithm with multi-target tracking for multi-agent systems. Pattern Recognition Letters, 31, 800–805.Google Scholar
  147. Maathuis, F. J. M. (2013). Plant mineral nutrients: Methods and protocols. New York: Springer. ISBN 978-1-62703-151-6.Google Scholar
  148. Macdonald, D. W., Creel, S., & Mills, M. G. L. (2004). Society: Canid society. In D. W. Macdonald & C. Sillero-Zubiri (Eds.), Biology and Conservation of Wild Carnivores (pp. 85–106). Oxford: Oxford University Press.Google Scholar
  149. Magstadt, T. M. (2013). Understanding politics: ideas, institutions, and issues. Cengage Learning: Belmont. ISBN 978-1-111-83256-8.Google Scholar
  150. Marcus, J. B. (2013). Culinary nutrition: The science and practice of healthy cooking. Waltham: Elsevier. ISBN 978-0-12-391882-6.Google Scholar
  151. Maroosi, A., & Muniyandi, R. C. (2013). Membrane computing inspired genetic algorithm on multi-core processors. Journal of Computer Science, 9, 264–270.Google Scholar
  152. Mayfield, J. E. (2013). The engine of complexity: Evolution as computation. New York: Columbia University Press. ISBN 978-0-231-16304-0.Google Scholar
  153. Mills, D. S., Marchant-Forde, J. N., McGreevy, P. D., Morton, D. B., Nicol, C. J., Phillips, C. J. C., et al. (Eds.). (2010). The encyclopedia of applied animal behaviour and welfare. Wallingford: CAB International. ISBN 978-0-85199-724-7.Google Scholar
  154. Mosser, A., & Packer, C. (2009). Group territoriality and the benefits of sociality in the African lion, Panthera leo. Animal Behaviour, 78, 359–370.Google Scholar
  155. Mucherino, A., & Seref, O. (2007). Monkey search: A novel metaheuristic search for global optimization. In AIP Conference Proceedings (Vol. 953, pp. 162–173).Google Scholar
  156. Mukherjee, R., Chakraborty, S., & Samanta, S. (2012). Selection of wire electrical discharge machining process parameters using non-traditional optimization algorithms. Applied Soft Computing, 12, 2506–2516.Google Scholar
  157. Müller, V. C. (Ed.). (2013). Philosophy and theory of artificial intelligence. Berlin: Springer. ISBN 978-3-642-31673-9.Google Scholar
  158. Muniyandi, R. C., & Zin, A. M. (2013). Membrane computing as the paradigm for modeling system biology. Journal of Computer Science, 9, 122–127.Google Scholar
  159. Murase, H. (2000). Finite element inverse analysis using a photosynthetic algorithm. Computers and Electronics in Agriculture, 29, 115–123.Google Scholar
  160. Muro, C., Escobedo, R., Spector, L., & Coppinger, R. P. (2011). Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behavioural Processes, 88, 192–197.Google Scholar
  161. Murphy, N. (2010). Uniformity conditions for membrane system uncovering complexity below P. Unpublished Doctoral Thesis, National University of Ireland Maynooth.Google Scholar
  162. Nabil, E., Badr, A., & Farag, I. (2012). A membrane-immune algorithm for solving the multiple 0-1 knapsack problem (pp. 3–15). LVII: Informatica.Google Scholar
  163. Nahas, N., Nourelfath, M., & Aït-Kadi, D. (2010). Iterated great deluge for the dynamic facility layout problem. Canada: Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation, Report No.: CIRRELT-2010-20.Google Scholar
  164. Nakagaki, T., Yamada, H., & Tóth, Á. (2000). Maze-solving by an amoeboid organism. Nature, 407, 470.Google Scholar
  165. Nara, K., Takeyama, T., & Kim, H. (1999). A new evolutionary algorithm based on sheep flocks heredity model and its application to scheduling problem. In IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. VI-503–VI-508).Google Scholar
  166. Neshat, M., Sepidnam, G., & Sargolzaei, M. (2013). Swallow swarm optimization algorithm: A new method to optimization. Neural Computing & Application, 23, 429–454. doi:  10.1007/s00521-012-0939-9.
  167. Newell, P. C. (1978). Genetics of the cellular slime molds. Annual Review of Genetics, 12, 69–93.Google Scholar
  168. Nguyen, V., Kearney, D., & Gioiosa, G. (2008). An implementation of membrane computing using reconfigurable hardware. Computing and Informatics, 27, 551–569.MathSciNetGoogle Scholar
  169. Nicolis, S. C., Detrain, C., Demolin, D., & Deneubourg, J. L. (2003). Optimality of collective choices: a stochastic approach. Bulletin of Mathematical Biology, 65, 795–808.Google Scholar
  170. Niizato, T., & Gunji, Y.-P. (2011). Metric–topological interaction model of collective behavior. Ecological Modelling, 222, 3041–3049.Google Scholar
  171. Nishida, T. Y. (2005, July 18–21). Membrane algorithm: An approximate algorithm for NP-complete optimization problems exploiting P-systems. In R. Freund, G. Lojka, M. Oswald, & G. Păun (Eds.), In 6th International workshop on membrane computing (WMC) (pp. 26–43). Vienna, Austria. Institute of Computer Languages, Faculty of Informatics, Vienna University of Technology.Google Scholar
  172. Nolle, L., Zelinka, I., Hopgood, A. A., & Goodyear, A. (2005). Comparison of an self-organizing migration algorithm with simulated annealing and differential evolution for automated waveform tuning. Advanced Engineering Software, 36, 645–653.Google Scholar
  173. Oca, M. A. M. D., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., & Dorigo, M. (2011). Majority-rule opinion dynamics with differential latency: A mechanism for self-organized collective decision-making. Swarm Intelligence, 5, 305–327.Google Scholar
  174. Ochoa-Zezzatti, A., Bustillos, S., Jaramillo, R., & Ruíz, V. (2012). Improving practice sports in a largest city using a cultural algorithm. International Journal of Combinatorial Optimization Problems and Informatics, 3, 14–20.Google Scholar
  175. Oftadeh, R., Mahjoob, M. J., & Shariatpanahi, M. (2010). A novel meta-heuristic optimization algorithm inspired by group hunting of animals: Hunting search. Computers and Mathematics with Applications, 60, 2087–2098.MATHGoogle Scholar
  176. Onwubolu, G. C. (2006). Performance-based optimization of multi-pass face milling operations using Tribes. International Journal of Machine Tools and Manufacture, 46, 717–727.Google Scholar
  177. Packer, C., & Caro, T. M. (1997). Foraging costs in social carnivores. Animal Behaviour, 54, 1317–1318.Google Scholar
  178. Păun, G. (2000). Computing with membranes. Journal of Computer and System Sciences, 61, 108–143.MATHMathSciNetGoogle Scholar
  179. Păun, G. (2002). A guide to membrane computing. Theoretical Computer Science, 287, 73–100.MATHMathSciNetGoogle Scholar
  180. Păun, G. (2007). Tracing some open problems in membrane computing. Romanian Journal of Information Science and Technology, 10, 303–314.Google Scholar
  181. Pei, Y., Zheng, S., Tan, Y., & Takagi, H. (2012, October 14–17). An empirical study on influence of approximation approaches on enhancing fireworks algorithm. In IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC 2012) (pp. 1322–1327). Seoul, Korea.Google Scholar
  182. Petit, O., & Bon, R. (2010). Decision-making processes: The case of collective movements. Behavioural Processes, 84, 635–647.Google Scholar
  183. Picarougne, F., Azzag, H., Venturini, G., & Guinot, C. (2007). A new approach of data clustering using a flock of agents. Evolutionary Computation, 15, 345–367.Google Scholar
  184. Port, A. C., & Yampolskiy, R. V. (2012). Using a GA and wisdom of artificial crowds to solve solitaire battleship puzzles. In IEEE 17th International Conference on Computer Games (CGAMES 2012) (pp. 25–29).Google Scholar
  185. Premaratne, U., Samarabandu, J., & Sidhu, T. (2009, December 28–31). A new biologically inspired optimization algorithm. In IEEE 4th International Conference on Industrial and Information Systems (ICIIS) (pp. 279–284). Sri Lanka.Google Scholar
  186. Ramachandran, V. S. (2012a). Encyclopedia of human behavior. London: Elsevier. ISBN 978-0-12-375000-6.Google Scholar
  187. Ramachandran, V. S. (2012b). Encyclopedia of human behavior. London: Elsevier. ISBN 978-0-12-375000-6.Google Scholar
  188. Ramachandran, V. S. (2012c). Encyclopedia of human behavior. London: Elsevier. ISBN 978-0-12-375000-6.Google Scholar
  189. Rao, R. V., Vakharia, D. P., & Savsani, V. J. (2009). Mechanical engineering design optimisation using modified harmony elements algorithm. International Journal of Design Engineering, 2, 116–135.Google Scholar
  190. Ravi, V. (2004). Optimization of complex system reliability by a modified great deluge algorithm. Asia-Pacific Journal of Operational Research, 21, 487–497.MATHMathSciNetGoogle Scholar
  191. Ray, T., & Liew, K. M. (2003). Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Transactions on Evolutionary Computation, 7, 386–396.Google Scholar
  192. Reece, J. B., Urry, L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V., & Jackson, R. B. (2011). Campbell biology. San Francisco: Pearson Education, Inc. ISBN 978-0-321-55823-7.Google Scholar
  193. Resende, R. R., & Ulrich, H. (2013). Trends in stem cell proliferation and cancer research. Dordrecht: Springer. ISBN 978-94-007-6210-7.Google Scholar
  194. Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model. Computer Graphics, 21, 25–34.Google Scholar
  195. Reynolds, R. G. (1994). An introduction to cultural algorithms. In A. V. Sebald & L. J. Fogel (Eds.) The 3rd Annual Conference on Evolutionary Programming (pp. 131–139). World Scientific Publishing.Google Scholar
  196. Reynolds, R. G. (1999). Cultural algorithms: theory and application In D. Corne, M. Dorigo & Glover, F. (Eds.), New Ideas in Optimization. NY: McGraw-Hill.Google Scholar
  197. Riff, M. C., Montero, E., & Neveu, B. (2013). Reducing calibration effort for clonal selection based algorithms. Knowledge-Based Systems, 41, 54–67.Google Scholar
  198. Rose, S. V. (2008). Volcano and earthquake. New York: Dorling Kindersley Limited. ISBN 978-0-7566-3780-4.Google Scholar
  199. Sacco, W. F., Oliveira, C. R. E. D., & Pereira, C. M. N. A. (2006). Two stochastic optimization algorithms applied to nuclear reactor core design. Progress in Nuclear Energy, 48, 525–539.Google Scholar
  200. Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2012). Mine blast algorithm for optimization of truss structures with discrete variables. Computers and Structures, 102–103, 49–63.Google Scholar
  201. Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2013). Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems. Applied Soft Computing, 13, 2592–2612.Google Scholar
  202. Samuels, P., Huntington, S., Allsop, W., & Harrop, J. (2009). Flood risk management: Research and practice. London: Taylor & Francis Group. ISBN 978-0-415-48507-4.Google Scholar
  203. Sand, H., Wikenros, C., Wabakken, P., & Liberg, O. (2006). Effects of hunting group size, snow depth and age on the success of wolves hunting moose. Animal Behaviour, 72, 781–789.Google Scholar
  204. Savage, N. (2012). Gaining wisdom from crowds. Communications of the ACM, 55, 13–15.Google Scholar
  205. Schnell, R. J., & Priyadarshan, P. M. (2012). Genomics of tree crops. New York: Springer. ISBN 978-1-4614-0919-9.Google Scholar
  206. Schutter, G. D., Theraulaz, G., & Deneubourg, J.-L. (2001). Animal–robots collective intelligence. Annals of Mathematics and Artificial Intelligence, 31, 223–238.Google Scholar
  207. Sedwards, S. (2009). A natural computation approach to biology: Modelling cellular processes and populations of cells with stochastic models of P systems. Unpublished Doctoral Thesis, University of Trento.Google Scholar
  208. Sell, S. (2013). Stem cells handbook. New York: Springer. ISBN 978-1-4614-7695-5.Google Scholar
  209. Şen, Z. (2014). Philosophical, logical and scientific perspectives in engineering. Heidelberg: Springer. ISBN 978-3-319-01741-9.Google Scholar
  210. Senkerik, R., Zelinka, I., Davendra, D., & Oplatkova, Z. (2010). Utilization of soma and differential evolution for robust stabilization of chaotic logistic equation. Computers and Mathematics with Applications, 60, 1026–1037.MATHMathSciNetGoogle Scholar
  211. Shann, M. (2008). Emergent behavior in a simulated robot inspired by the slime mold. Unpublished Bachelor Thesis, University of Zurich.Google Scholar
  212. Shaw, B., Banerjee, A., Ghoshal, S. P., & Mukherjee, V. (2011). Comparative seeker and bio-inspired fuzzy logic controllers for power system stabilizers. Electrical Power and Energy Systems, 33, 1728–1738.Google Scholar
  213. Shettleworth, S. J. (2010). Cognition, evolution, and behavior. New York: Oxford University Press. ISBN 978-0-19-531984-2.Google Scholar
  214. Shi, Y. (2011a). Brain storm optimization algorithm. In Y. Tan, Y. Shi & G. Wang (Eds.), ICSI 2011, Pat I, LNCS (Vol. 6728, pp. 303–309). Berlin: Springer.Google Scholar
  215. Shi, Y. (2011b). An optimization algorithm based on brainstorming process. International Journal of Swarm Intelligence Research, 2, 35–62.Google Scholar
  216. Shlesinger, M. F., Klafter, J., & Zumofen, G. (1999). Above, below and beyond Brownian motion. American Journal of Physics, 67, 1253–1259.Google Scholar
  217. Silva, D. J. A. D., Teixeira, O. N., & Oliveira, R. C. L. D. (2012). Performance study of cultural algorithm based on genetic algorithm with single and multi population for the MKP. In S. Gao (Ed.), Bio-inspired computational algorithms and their applications. Rijeka: InTech.Google Scholar
  218. Sizer, F. S., & Whitney, E. (2014). Nutrition: Concepts and controversies. Belmont: Cengage Learning. ISBN 978-1-133-60318-4.Google Scholar
  219. Smolin, L. A., & Grosvenor, M. B. (2010). Healthy eathing_a guide to nutrition: Nutrition for sports and exercise. New York: Infobase Publishing. ISBN 978-1-60413-804-7.Google Scholar
  220. Song, M. X., Chen, K., He, Z. Y., & Zhang, X. (2013). Bionic optimization for micro-siting of wind farm on complex terrain. Renewable Energy, 50, 551–557.Google Scholar
  221. Srinivasan, S., & Ramakrishnan, S. (2012). Nugget discovery with a multi-objective cultural algorithm. Computer Science and Engineering: An International Journal, 2, 11–25.Google Scholar
  222. Steinbuch, R. (2011). Bionic optimisation of the earthquake resistance of high buildings by tuned mass dampers. Journal of Bionic Engineering, 8, 335–344.Google Scholar
  223. Steinitz, M. (2014). Human monoclonal antibodies: Methods and protocols. New York: Springer. ISBN 978-1-62703-585-9.Google Scholar
  224. Stradner, J., Thenius, R., Zahadat, P., Hamann, H., Crailsheim, K., & Schmickl, T. (2013). Algorithmic requirements for swarm intelligence in differently coupled collective systems. Chaos: Solitons and Fractals. 50.Google Scholar
  225. Stukas, A. A., & Clary, E. G. (2012). Altruism and helping behavior. In V. S. Ramachandran, (Ed.), Encyclopedia of human behavior (2nd ed.). London: Elsevier, Inc. ISBN 978-0-12-375000-6.Google Scholar
  226. Su, M.-C., Su, S.-Y., & Zhao, Y.-X. (2009). A swarm-inspired projection algorithm. Pattern Recognition, 42, 2764–2786.MATHGoogle Scholar
  227. Subbaiah, K. V., Rao, M. N., & Rao, K. N. (2009). Scheduling of AGVs and machines in FMS with makespan criteria using sheep flock heredity algorithm. International Journal of Physical Sciences, 4, 139–148.Google Scholar
  228. Sueur, C., Deneubourg, J.-L., & Petit, O. (2010). Sequence of quorums during collective decision making in macaques. Behavioral Ecology and Sociobiology, 64, 1875–1885.Google Scholar
  229. Sulaiman, M. H. (2013, March 15–17). Differential search algorithm for economic dispatch with valve-point effects. In 2nd International Conference on Engineering and Applied Science (ICEAS) (pp. 111–117). Tokyo: Toshi Center Hotel.Google Scholar
  230. Sulis, W. (1997). Fundamental concepts of collective intelligence. Nonlinear Dynamics, Psychology, and Life Sciences, 1, 35–53.MATHGoogle Scholar
  231. Sun, J., & Lei, X. (2009). Geese-inspired hybrid particle swarm optimization algorithm. In International Conference on Artificial Intelligence and Computational Intelligence (pp. 134–138). IEEE.Google Scholar
  232. Taffe, M. A., & Taffe, W. J. (2011). Rhesus monkeys employ a procedural strategy to reduce working memory load in a self-ordered spatial search task. Brain Research, 1413, 43–50.Google Scholar
  233. Taherdangkoo, M., Shirzadi, M. H., & Bagheri, M. H. (2012a). A novel meta-heuristic algorithm for numerical function optimization_blind, naked mole-rats (BNMR) algorithm. Scientific Research and Essays, 7, 3566–3583.Google Scholar
  234. Taherdangkoo, M., Yazdi, M., & Bagheri, M. H. (2011). Stem cells optimization algorithm. LNBI (Vol. 6840, pp. 394–403). Berlin: Springer.Google Scholar
  235. Taherdangkoo, M., Yazdi, M., & Bagheri, M. H. (2012b). A powerful and efficient evolutionary optimization algorithm based on stem cells algorithm for data clustering. Central European Journal of Computer Science, 2, 1–13.Google Scholar
  236. Tan, Y., & Zhu, Y. (2010). Fireworks algorithm for optimization. In Y. Tan, Y. Shi & K. C. Tan (Eds.), ICSI 2010, Part I, LNCS (Vol. 6145, pp. 355–364). Berlin: SpringerGoogle Scholar
  237. Taylor, K. (2012). The brain supremacy: Notes from the frontiers of neuroscience. Oxford: Oxford University Press. ISBN 978-0-19-960337-4.Google Scholar
  238. Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D. P., Fricker, M. D., et al. (2010). Rules for biologically inspired adaptive network design. Science, 237, 439–442.MathSciNetGoogle Scholar
  239. Thammano, A., & Moolwong, J. (2010). A new computational intelligence technique based on human group formation. Expert Systems with Applications, 37, 1628–1634.Google Scholar
  240. Theiner, G., Allen, C., & Goldstone, R. L. (2010). Recognizing group cognition. Cognitive Systems Research, 11, 378–395.Google Scholar
  241. Tidball, K. G., & Krasny, M. E. (2014). Greening in the red zone: Disaster, resilience and community greening. Heidelberg: Springer. ISBN 978-90-481-9946-4.Google Scholar
  242. Tollefsen, D. P. (2006). From extended mind to collective mind. Cognitive Systems Research, 7, 140–150.Google Scholar
  243. Touhara, K. (2013). Pheromone signaling: Methods and protocols. New York: Springer. ISBN 978-1-62703-618-4.Google Scholar
  244. Ulutas, B. H., & Kulturel-Konak, S. (2011). A review of clonal selection algorithm and its applications. Artificial Intelligence Review, 36, 117–138.Google Scholar
  245. Umedachi, T., Takeda, K., Nakagaki, T., Kobayashi, R., & Ishiguro, A. (2010). Fully decentralized control of a soft-bodied robot inspired by true slime mold. Biological Cybernetics, 102, 261–269.Google Scholar
  246. Venkumar, P., & Sekar, K. C. (2012). Design of cellular manufacturing system using non-traditional optimization algorithms. In V. Modrák & R. S. Pandian (Eds.), Operations management research and cellular manufacturing systems: Innovative methods and approaches, Chap. 6 (pp. 99–139). Hershey: IGI Global.Google Scholar
  247. Verdy, A., & Flierl, G. (2008). Evolution and social behavior in krill. Deep-Sea Research II, 55, 472–484.Google Scholar
  248. Vucetich, J. A., Peterson, R. O., & Waite, T. A. (2004). Raven scavenging favours group foraging in wolves. Animal Behaviour, 67, 1117–1126.Google Scholar
  249. Wang, G., Guo, L., Gandomi, A. H., Cao, L., Alavi, A. H., Duan, H., et al. (2013). Lévy-flight krill herd algorithm. Mathematical Problems in Engineering, 2013, 1–14.Google Scholar
  250. Wang, P., & Cheng, Y. (2010). Relief supplies scheduling based on bean optimization algorithm. Economic Research Guide, 8, 252–253.Google Scholar
  251. Wang, S., Dai, D., Hu, H., Chen, Y.-L., & Wu, X. (2011). RBF neural network parameters optimization based on paddy field algorithm. In International Conference on Information and Automation (ICIA) (pp. 349–353). June, Shenzhen, China. IEEE.Google Scholar
  252. Wang, W., Feng, Q., & Zheng, Y. (2008, November 19–21). A novel particle swarm optimization algorithm with stochastic focusing search for real-parameter optimization. In 11th Singapore International Conference on Communication Systems (ICCS) (pp. 583–587). Guangzhou, China. IEEE.Google Scholar
  253. Wang, X., Gao, X.-Z., & Ovaska, S. J. (2009). Fusion of clonal selection algorithm and harmony search method in optimization of fuzzy classification systems. International Journal of Bio-Inspired Computation, 1, 80–88.Google Scholar
  254. Wang, Z.-R., Ma, F., Ju, T., & Liu, C.-M. (2010). A niche genetic algorithm with population migration strategy. In IEEE 2nd International Conference on Information Science and Engineering (ICISE) (pp. 912–915).Google Scholar
  255. Wei, G. (2011). Optimization of mine ventilation system based on bionics algorithm. Procedia Engineering, 26, 1614–1619.Google Scholar
  256. Wei, Z. H., Cui, Z. H., & Zeng, J. C. (2010, September 26–28). Social cognitive optimization algorithm with reactive power optimization of power system. In 2010 International Conference on Computational Aspects of Social Networks (CASoN) (pp. 11–14). Taiyuan, China.Google Scholar
  257. Weigert, G., Horn, S., & Werner, S. (2006). Optimization of manufacturing processes by distributed simulation. International Journal of Production Research, 44, 3677–3692.MATHGoogle Scholar
  258. Whitehouse, M. E. A., & Lubin, Y. (1999). Competitive foraging in the social spider Stegodyphus dumicola. Animal Behaviour, 58, 677–688.Google Scholar
  259. Whitten, K. W., Davis, R. E., Peck, M. L., & Stanley, G. G. (2014). Chemistry. Belmont: Cengage Learning. ISBN 13: 978-1-133-61066-3.Google Scholar
  260. Wilson, C. (2013). Brainstroming and beyond: a user-centered design method. Waltham: Morgan Kaufmann, Elsevier Inc. ISBN 978-0-12-407157-5.Google Scholar
  261. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1, 67–82.Google Scholar
  262. Woodward, J. (2008). Climate change. New York: Dorling Kindersley Limited. ISBN 978-07566-3771-2.Google Scholar
  263. Woodworth, S. (2007). Computability limits in membrane computing. Unpublished Doctoral Thesis, University of California, Santa Barbara.Google Scholar
  264. Wu, J., Cui, Z., & Liu, J. (2011, August 18–20). Using hybrid social emotional optimization algorithm with metropolis rule to solve nonlinear equations. In Y. Wang, A. Celikyilmaz, W. Kinsner, W. Pedrycz, H. Leung & L. A. Zadeh (Eds.), 10th International Conference on Cognitive Informatics and Cognitive Computing (ICCI & CC) (pp. 405–411). Banff, AB. IEEE.Google Scholar
  265. Xiao, J.-H., Huang, Y.-F., & Cheng, Z. (2013). A bio-inspired algorithm based on membrane computing for engineering design problem. International Journal of Computer Science Issues, 10, 580–588.Google Scholar
  266. Xu, Y. C., Cui, Z. H., & Zeng, J. C. (2010). Social emotional optimization algorithm for nonlinear constrained optimization problems. In 1st International Conference on Swarm, Evolutionary and Memetic Computing (SEMCCO) (pp. 583–590).Google Scholar
  267. Xue, J., Wu, Y., Shi, Y., & Cheng, S. (2012). Brain storm optimization algorithm for multi-objective optimization problems. In Y. Tan, Y. Shi & Z. Ji (Eds.), ICSI 2012, Part I, LNCS (Vol. 7331, pp. 513–519). Berlin: Springer.Google Scholar
  268. Yampolskiy, R. V., Ashby, L., & Hassan, L. (2012). Wisdom of artificial crowds: A metaheuristic algorithm for optimization. Journal of Intelligent Learning Systems and Applications, 4, 98–107.Google Scholar
  269. Yang, C., Tu, X., & Chen, J. (2007). Algorithm of marriage in honey bees optimization based on the wolf pack search. In IEEE International Conference on Intelligent Pervasive Computing (IPC) (pp. 462–467).Google Scholar
  270. Yang, X.-S. (2005). Biology-derived algorithms in engineering optimization. In S. Olarius & A. Zomaya (Eds.), Handbook of Bioinspired Algorithms and Applications, Chap. 32 (pp. 585–596). Boca Raton: CRC Press.Google Scholar
  271. Yang, X.-S. (2012). Flower pollination algorithm for global optimization. Unconventional Computation and Natural Computation, LNCS (Vol. 7445, pp. 240–249). Berlin: Springer.Google Scholar
  272. Yang, X.-S., & Deb, S. (2010). Eagle strategy using Lévy walk and firefly algorithms for stochastic optimization. In J. R. Gonzalez (Ed.), Nature Inspired Cooperative Strategies for Optimization (NISCO 2010), SCI (Vol. 284, pp. 101–111). Berlin: Springer.Google Scholar
  273. Yang, X.-S., & Deb, S. (2012). Two-stage eagle strategy with differential evolution. International Journal of Bio-Inspired Computation, 4, 1–5.Google Scholar
  274. Yang, X.-S., Karamanoglu, M., & He, X. (2013). Multi-objective flower algorithm for optimization. Procedia Computer Science, 18, 861–868.Google Scholar
  275. Yeagle, P. L. (Ed.). (2005). The structure of biological membranes. Boca Raton: CRC Press. ISBN 0-8493-1403-8.Google Scholar
  276. You, S. K., Kwon, D. H., Park, Y.-I., Kim, S. M., Chung, M.-H., & Kim, C. K. (2009). Collective behaviors of two-component swarms. Journal of Theoretical Biology, 261, 494–500.MathSciNetGoogle Scholar
  277. Zaharie, D., & Ciobanu, G. (2006). Distributed evolutionary algorithms inspired by membranes in solving continuous optimization problems. In H. J. Hoogeboom (Ed.), WMC 7, LNCS (Vol. 4361, pp. 536–553). Berlin: Springer.Google Scholar
  278. Zang, H., Zhang, S., & Hapeshi, K. (2010). A review of nature-inspired algorithms. Journal of Bionic Engineering, 7, S232–S237.Google Scholar
  279. Zelinka, I., & Lampinen, J. (2000). Soma: Self-organizing migrating algorithm. In The 6th International Conference on Soft Computing, Brno, Czech Republic. Google Scholar
  280. Zelinka, I., Senkerik, R., & Navratil, E. (2009). Investigation on evolutionary optimization of chaos control. Chaos, Solitons and Fractals, 40, 111–129.MATHGoogle Scholar
  281. Zhan, Z.-H., Zhang, J., Shi, Y.-H., & Liu, H.-L. (2012, June 10–15) A modified brain storm optimization. In World Congress on Computational Intelligence (WCCI) (pp. 1–8). Brisbane, Australia. IEEE.Google Scholar
  282. Zhang, G., Cheng, J., & Gheorghe, M. (2011). A membrane-inspired approximate algorithm for traveling salesman problems. Romanian Journal of Information Science and Technology, 14, 3–19.Google Scholar
  283. Zhang, G., Yang, H., & Liu, Z. (2007). Using watering algorithm to find the optimal paths of a maze. Computer, 24, 171–173.Google Scholar
  284. Zhang, W., Luo, Q. & Zhou, Y. (2009). A method for training RBF neural networks based on population migration algorithm. In International Conference on Artificial Intelligence and Computational Intelligence (AICI) (pp. 165–169). IEEE.Google Scholar
  285. Zhang, W., & Zhou, Y. (2009). Description population migration algorithm based on framework of swarm intelligence. In IEEE WASE International Conference on Information Engineering (ICIE) (pp. 281–284).Google Scholar
  286. Zhang, X., Chen, W., & Dai, C. (2008a, April 6–9) Application of oriented search algorithm in reactive power optimization of power system. DRPT 2008 (pp. 2856–2861). Nanjing, China. DRPT.Google Scholar
  287. Zhang, X., Sun, B., Mei, T., & Wang, R. (2010, November 28–30). Post-disaster restoration based on fuzzy preference relation and bean optimization algorithm. In Youth Conference on Information Computing and Telecommunications (YC-ICT) (pp. 271–274). IEEE.Google Scholar
  288. Zhang, X., Jiang, K., Wang, H., Li, W., & Sun, B. (2012a). An improved bean optimization algorithm for solving TSP. In Y. Tan, Y. Shi & Z. Ji (Eds.), ICSI 2012, Part I, LNCS (Vol. 7331, pp. 261–267). Berlin: Springer.Google Scholar
  289. Zhang, X., Huang, S., Hu, Y., Zhang, Y., Mahadevan, S., & Deng, Y. (2013a). Solving 0-1 knapsack problems based on amoeboid organism algorithm. Applied Mathematics and Computation, 219, 9959–9970.MathSciNetGoogle Scholar
  290. Zhang, X., Sun, B., Mei, T., & Wang, R. (2013b). A novel evolutionary algorithm inspired by beans dispersal. International Journal of Computational Intelligence Systems, 6, 79–86.Google Scholar
  291. Zhang, X., Wang, H., Sun, B., Li, W., & Wang, R. (2013c). The Markov model of bean optimization algorithm and its convergence analysis. International Journal of Computational Intelligence Systems, 6, 609–615.Google Scholar
  292. Zhang, X., Wang, R., & Song, L. (2008b). A novel evolutionary algorithm: Seed optimization algorithm. Pattern Recognition and Artificial Intelligence, 21, 677–681.Google Scholar
  293. Zhang, Z.-W., Zhang, H., & Li, Y.-B. (2012b). Biologically inspired collective construction with visual landmarks. Journal of Zhejiang University-SCIENCE C (Computers and Electronics), 13, 315–327.Google Scholar
  294. Zhao, Q., & Liu, X. (2011). An improved multi-objective population migration optimization algorithm. In 2nd International Symposium on Intelligence Information Processing and Trusted Computing (IPTC) (pp. 143–146). IEEE.Google Scholar
  295. Zheng, Y., Chen, W., Dai, C., & Wang, W. (2009). Stochastic focusing search: A novel optimization algorithm for real-parameter optimization. Journal of Systems Engineering and Electronics, 20, 869–876.Google Scholar
  296. Zhou, D., Shi, Y., & Cheng, S. (2012). Brain storm optimization algorithm with modified step-size and individual generation. In Y. Tan, Y. Shi & Z. Ji (Eds.), ICSI 2012, Part I, LNCS (Vol. 7331, pp. 243–252). Berlin: Springer.Google Scholar
  297. Zhou, Y., & Liu, B. (2009). Two novel swarm intelligence clustering analysis methods. In IEEE Fifth International Conference on Natural Computation (ICNC) (pp. 497–501).Google Scholar
  298. Zhou, Y., & Mao, Z. (2003). A new search algorithm for global optimization: Population migration algorithm. Journal of South China University of Technology, A31, 1–5.Google Scholar
  299. Zungeru, A. M., Ang, L.-M., & Seng, K. P. (2012). Termite-hill: Performance optimized swarm intelligence based routing algorithm for wireless sensor networks. Journal of Network and Computer Applications, 35, 1901–1917.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Faculty of Engineering, Built Environment and Information Technology, Department of Mechanical Engineering and Aeronautical EngineeringUniversity of PretoriaPretoriaSouth Africa
  2. 2.Department of New Product DevelopmentMeiyuan Mould Design and Manufacturing Co., Ltd.XianghePeople’s Republic of China

Personalised recommendations