Predictive Control in Power Electronics and Drives: Basic Concepts, Theory, and Methods

  • Daniel E. Quevedo
  • Ricardo P. Aguilera
  • Tobias Geyer
Chapter

Abstract

In this chapter we revise basic principles and methods of model predictive control with a view towards applications in power electronics and drives. The simplest predictive control formulations use horizon-one cost functions, which can be related to well-established dead-beat controllers. Model predictive control using larger horizons has the potential to give significant performance benefits, but requires more computations at each sampling instant to solve the associated optimization problems. For particular classes of system models, we discuss practical algorithms, which make long-horizon predictive control suitable for power electronics applications.

References

  1. 1.
    E. Agrell, T. Eriksson, A. Vardy, K. Zeger, Closest point search in lattices. IEEE Trans. Inform. Theory 48(8), 2201–2214 (2002)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    R.P. Aguilera, D.E. Quevedo, Capacitor voltage estimation for predictive control algorithm of flying capacitor converters, in IEEE International Conference on Industrial Technology (Melbourne, 2009)Google Scholar
  3. 3.
    R.P. Aguilera, D.E. Quevedo, On stability and performance of finite control set MPC for power converters, in Workshop on Predictive Control of Electrical Drives and Power Electronics (PRECEDE) (2011), pp. 55–62Google Scholar
  4. 4.
    R.P. Aguilera, D.E. Quevedo, Stability analysis of quadratic MPC with a discrete input alphabet. IEEE Trans. Autom. Control (2013), 58(12), pp. 3190–3196Google Scholar
  5. 5.
    K.J. Åström, B. Wittenmark, Computer-Controlled Systems: Theory and Design, 3rd edn. (Prentice Hall, Upper Saddle River, 1997)Google Scholar
  6. 6.
    A.G. Beccuti, G. Papafotiou, M. Morari, Explicit model predictive control of the boost dc-dc converter, in Proceedings of the 2nd IFAC Conference on Analysis and Design of Hybrid Systems (Alghero, 2006)Google Scholar
  7. 7.
    A. Bemporad, F. Borrelli, M. Morari, Model predictive control based on linear programming—the explicit solution. IEEE Trans. Autom. Control 47(12), 1974–1985 (2002)CrossRefMathSciNetGoogle Scholar
  8. 8.
    A. Bemporad, M. Morari, Control of systems integrating logic, dynamics and constraints. Automatica 35(3), 407–427 (1999)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    A. Bemporad, M. Morari, V. Dua, E.N. Pistikopoulos, The explicit linear quadratic regulator for constrained systems. Automatica 38(1), 3–20 (2002)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    S. Bolognani, S. Bolognani, L. Peretti, M. Zigliotto, Design and implementation of model predictive control for electrical motor drives. IEEE Trans. Industr. Electron. 56(6), 1925–1936 (2009)CrossRefGoogle Scholar
  11. 11.
    F. Borrelli, Constrained OPTIMAL Control of Linear and Hybrid Systems, LNCIS, vol. 290 (Springer, Berlin, 2003)Google Scholar
  12. 12.
    F. Borrelli, M. Baotić, A. Bemporad, M. Morari, Dynamic programming for constrained optimal control of discrete-time linear hybrid systems. Automatica 41(10), 1709–1721 (2005)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    F. Borrelli, A. Bemporad, M. Morari, Geometric algorithm for multiparametric linear programming. J. Optim. Theory Appl. 118(3), 515–540 (2003)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    G.S. Buja, Optimum output waveforms in PWM inverters. IEEE Trans. Ind. Appl. 16(6), 830–836 (1980)CrossRefGoogle Scholar
  15. 15.
    T. Burtscher, T. Geyer, Deadlock avoidance in model predictive direct torque control. IEEE Trans. Ind. Appl. 49(5), 2126–2135 (Raleigh, 2013)Google Scholar
  16. 16.
    R. Cagienard, P. Grieder, E. Kerrigan, M. Morari, Move blocking strategies in receding horizon control. J. Process Control 17, 563–570 (2007)CrossRefGoogle Scholar
  17. 17.
    E.F. Camacho, C. Bordons, Model Predictive Control (Springer, New York, 1999)CrossRefGoogle Scholar
  18. 18.
    D.W. Clarke, C. Mohtadi, P.S. Tuffs, Generalized predictive control—part I. The basic algorithm. Automatica 23(2), 137–148 (1987)CrossRefMATHGoogle Scholar
  19. 19.
    P. Correa, M. Pacas, J. Rodrguez, Predictive torque control for inverter-fed induction machines. IEEE Trans. Industr. Electron. 54(2), 1073–1079 (2007)CrossRefGoogle Scholar
  20. 20.
    P. Cortés, M.P. Kazmierkowski, R.M. Kennel, D.E. Quevedo, J. Rodríguez, Predictive control in power electronics and drives. IEEE Trans. Industr. Electron. 55(12), 4312–4324 (2008)CrossRefGoogle Scholar
  21. 21.
    P. Cortés, G. Ortiz, J.I. Yuz, J. Rodríguez, S. Vazquez, L. Franquelo, Model predictive control of an inverter with output filter for UPS applications. IEEE Trans. Industr. Electron. 56(6), 1875–1883 (2009)CrossRefGoogle Scholar
  22. 22.
    P. Cortés, J. Rodríguez, S. Vazquez, L. Franquelo, Predictive control of a three-phase UPS inverter using two steps prediction horizon, in Proceedings IEEE International Conference Industrial Technology (Viña del Mar, 2010), pp. 1283–1288Google Scholar
  23. 23.
    M. Cychowski, K. Szabat, T. Orlowska-Kowalska, Constrained model predictive control of the drive system with mechanical elasticity. IEEE Trans. Industr. Electron. 56(6), 1963–1973 (2009)CrossRefGoogle Scholar
  24. 24.
    A. Domahidi, A. Zgraggen, M. Zeilinger, M. Morari, C. Jones, Efficient interior point methods for multistage problems arising in receding horizon control, in IEEE Conference on Decision and Control (Maui, 2010), pp. 668–674Google Scholar
  25. 25.
    V. Dua, N.A. Bozinis, E.N. Pistikopoulos, A multiparametric programming approach for mixed-integer quadratic engineering problems. Comput. Chemical Eng. 26(4–5), 715–733 (2002)CrossRefGoogle Scholar
  26. 26.
    V. Dua, E.N. Pistikopoulos, An algorithm for the solution of multiparametric mixed integer linear programming problems. Ann. Oper. Res. 123–139 (2000)Google Scholar
  27. 27.
    U. Fincke, M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comput. 44(170), 463–471 (1985)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    R. Fletcher, A general quadratic programming algorithm. IMA J. Appl. Math. 7(1), 76–91 (1971)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    E.J. Fuentes, C.A. Silva, J.I. Yuz, Predictive speed control of a two-mass system driven by a permanent magnet synchronous motor. IEEE Trans. Industr. Electron. 59(7), 2840–2848 (2012)CrossRefGoogle Scholar
  30. 30.
    F. Garofalo, P. Marino, S. Scala, F. Vasca, Control of DC/DC converters with linear optimal feedback and nonlinear feed forward. IEEE Trans. Power Electron. 9(6), 607–615 (1994)CrossRefGoogle Scholar
  31. 31.
    A. Gersho, R.M. Gray, Vector Quantization and Signal Compression (Kluwer Academic, Boston, 1992)CrossRefMATHGoogle Scholar
  32. 32.
    T. Geyer, Low complexity model predictive control in power electronics and power systems. Ph.D. Thesis, Automatic Control Laboratory ETH Zurich (2005)Google Scholar
  33. 33.
    T. Geyer, Generalized model predictive direct torque control: long prediction horizons and minimization of switching losses, in IEEE Conference on Decision and Control (Shanghai, 2009), pp. 6799–6804Google Scholar
  34. 34.
    T. Geyer, A comparison of control and modulation schemes for medium-voltage drives: emerging predictive control concepts versus PWM-based schemes. IEEE Trans. Ind. Appl. 47(47), 1380–1389 (2011)MathSciNetGoogle Scholar
  35. 35.
    T. Geyer, Computationally efficient model predictive direct torque control. IEEE Trans. Power Electron. 26(10), 2804–2816 (2011)CrossRefGoogle Scholar
  36. 36.
    T. Geyer, Model predictive direct current control: formulation of the stator current bounds and the concept of the switching horizon. IEEE Ind. Appl. Mag. 18(2), 47–59 (2012)CrossRefGoogle Scholar
  37. 37.
    T. Geyer, R.P. Aguilera, D.E. Quevedo, On the stability and robustness of model predictive direct current control, in Proceedings of the IEEE International Conference on Industrial Technology, Cape Town, South Africa (2013)Google Scholar
  38. 38.
    T. Geyer, N. Oikonomou, G. Papafotiou, F. Kieferndorf, Model predictive pulse pattern control. IEEE Trans. Ind. Appl. 48(2), 663–676 (2012)CrossRefGoogle Scholar
  39. 39.
    T. Geyer, G. Papafotiou, Direct torque control for induction motor drives: A model predictive control approach based on feasibility, in Hybrid Systems: Computation and Control, ed. by M. Morari, L. Thiele, LNCS, vol. 3414 (Springer, NewYork, 2005), pp. 274–290Google Scholar
  40. 40.
    T. Geyer, G. Papafotiou, R. Frasca, M. Morari, Constrained optimal control of the step-down dc-dc converter. IEEE Trans. Power Electron. 23(5), 2454–2464 (2008)CrossRefGoogle Scholar
  41. 41.
    T. Geyer, G. Papafotiou, M. Morari, On the optimal control of switch-mode dc-dc converters, in Hybrid Systems: Computation and Control, ed. by R. Alur, G. Pappas, LNCS, vol. 2993 (Springer, New York, 2004), pp. 342–356Google Scholar
  42. 42.
    T. Geyer, G. Papafotiou, M. Morari, Hybrid model predictive control of the step-down dc-dc converter. IEEE Trans. Control Syst. Technol. 16(6), 1112–1124 (2008)CrossRefGoogle Scholar
  43. 43.
    T. Geyer, G. Papafotiou, M. Morari, Model predictive direct torque control–-Part I: Concept, algorithm and analysis. IEEE Trans. Industr. Electron. 56(6), 1894–1905 (2009)CrossRefGoogle Scholar
  44. 44.
    T. Geyer, D.E. Quevedo, Multistep direct model predictive control for power electronics – Part 1: Algorithm, in Proceedings of the Energy Conversion Congress and Exposition (ECCE) (2013)Google Scholar
  45. 45.
    T. Geyer, D.E. Quevedo, Multistep direct model predictive control for power electronics – Part 2: Analysis, in Proceedings of the Energy Conversion Congress and Exposition (ECCE) (2013)Google Scholar
  46. 46.
    T. Geyer, J. Scoltock, U. Madawala, Model predictive direct power control for grid-connected converters, in Proceedings of the IEEE Industrial Electronics Society Annual Conference, Melbourne, Australia (2011)Google Scholar
  47. 47.
    T. Geyer, F. Torrisi, M. Morari, Optimal complexity reduction of polyhedral piecewise affine systems. Automatica 44(7), 1728–1740 (2008)CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    T. Geyer, F. Torrisi, M. Morari, Efficient mode enumeration of compositional hybrid systems. Int. J. Control 83(2), 313–329 (2010)CrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    G. Goodwin, D. Mayne, K.Y. Chen, C. Coates, G. Mirzaeva, D. Quevedo, An introduction to the control of switching electronic systems. Ann. Rev. Control 34(2), 209–220 (2010)CrossRefGoogle Scholar
  50. 50.
    G.C. Goodwin, M.M. Serón, J.A. De Doná, Constrained Control & Estimation – An Optimization Perspective (Springer, London, 2005)Google Scholar
  51. 51.
    L. Grüne, J. Panne, Nonlinear Model Predictive Control: Theory and Algorithms (Springer, New York, 2011)Google Scholar
  52. 52.
    L. Grüne, A. Rantzer, On the infinite horizon performance of receding horizon controllers. IEEE Trans. Autom. Control 53(9), 2100–2111 (2008)CrossRefGoogle Scholar
  53. 53.
    B. Hassibi, H. Vikalo, On the sphere-decoding algorithm I. Expected complexity. IEEE Trans. Signal Process. 53(8), 2806–2818 (2005)CrossRefMathSciNetGoogle Scholar
  54. 54.
    W.P.M.H. Heemels, B. De Schutter, A. Bemporad, Equivalence of hybrid dynamical models. Automatica 37(7), 1085–1091 (2001)CrossRefMATHGoogle Scholar
  55. 55.
    J. Holtz, The representation of AC machine dynamics by complex signal graphs. IEEE Trans. Industr. Electron. 42(3), 263–271 (1995)CrossRefGoogle Scholar
  56. 56.
    J.S. Hu, K.Y. Chen, Analysis and design of the receding horizon constrained optimization for class-D amplifier driving signals. Digital Signal Process. 20, 1511–1525 (2010)CrossRefGoogle Scholar
  57. 57.
    IBM ILOG, Inc., CPLEX 12.5 User Manual. Somers, NY, USA (2012)Google Scholar
  58. 58.
    S.G. Jeong, M.H. Woo, DSP-based active power filter with predictive current control. IEEE Trans. Industr. Electron. 44(3), 329–336 (1997)CrossRefGoogle Scholar
  59. 59.
    J. Jerez, G. Constantinides, E. Kerrigan, An FPGA implementation of a sparse quadratic programming solver for constrained predictive control, in Proceedings of the ACM/SIGDA International Symposium FPGA, pp. 209–218 (2011)Google Scholar
  60. 60.
    P. Karamanakos, T. Geyer, S. Manias, Direct voltage control of DC-DC boost converters using model predictive control based on enumeration, in Proceedings of the International Power Electronics and Motion Control Conference, Novi Sad, Serbia (2012)Google Scholar
  61. 61.
    N. Karmarkar, A new polynomial-time algorithm for linear programming, in Proceedings of the ACM Symposium Theory Computing, pp. 302–311 (1984)Google Scholar
  62. 62.
    W. Karush, Minima of functions of several variables with inequalities as side constraints. Master’s thesis, University of Chicago, Chicago, IL, USA (1939)Google Scholar
  63. 63.
    R. Kennel, A. Linder, M. Linke, Generalized predictive control (GPC) – ready for use in drive applications ? in Proceedings of the IEEE Power Electronics Specialists Conference (PESC), pp. 1839–1844. Vancouver, Canada (2001)Google Scholar
  64. 64.
    F. Kieferndorf, P. Karamanakos, P. Bader, N. Oikonomou, T. Geyer, Model predictive control of the internal voltages of a five-level active neutral point clamped converter, in Proceedings of the IEEE Energy Conversion Congress and Exposition, Raleigh, NC, USA (2012)Google Scholar
  65. 65.
    S. Kouro, P. Cortés, R. Vargas, U. Ammann, J. Rodrguez, Model Predictive Control–A Simple and Powerful Method to Control Power Converters. IEEE Trans. Industr. Electron. 56(6), 1826–1838 (2009)CrossRefGoogle Scholar
  66. 66.
    M. Kozlov, S. Tarasov, L. Khachiyan, The polynomial solvability of convex quadratic programming. USSR Comput. Math. Math. Physics 20(5), 223–228 (1980)CrossRefMATHMathSciNetGoogle Scholar
  67. 67.
    P.C. Krause, O. Wasynczuk, S.D. Sudhoff, Analysis of Electric Machinery and Drive Systems, 2nd edn. (John Wiley & Sons Inc, New York, 2002)Google Scholar
  68. 68.
    H. Kuhn, A. Tucker, Nonlinear programming, in Proceedings of the 2nd Berkeley Symposium Mathmatical Statistics and Probability, pp. 481–492 (1951)Google Scholar
  69. 69.
    O. Kukrer, Discrete-time current control of voltage-fed three-phase PWM inverters. IEEE Trans. Power Electron. 11(2), 260–269 (1996)CrossRefGoogle Scholar
  70. 70.
    M. Kvasnica, P. Grieder, M. Baotić, M. Morari, Multi parametric toolbox (MPT), in Hybrid Systems: Computation and Control, LNCS, ed. by R. Alur, G. Pappas, vol. 2993 (Springer, 2004), pp. 448–462. http://control.ee.ethz.ch/~mpt
  71. 71.
    E.L. Lawler, D.E. Wood, Branch and bound methods: A survey. Op. Res. 14(4), 699–719 (1966)CrossRefMATHMathSciNetGoogle Scholar
  72. 72.
    B. Lehman, R.M. Bass, Extensions of averaging theory for power electronic systems. IEEE Trans. Power Electron. 11(4), 542–553 (1996)CrossRefGoogle Scholar
  73. 73.
    P. Lezana, R.P. Aguilera, D.E. Quevedo, Model predictive control of an asymmetric flying capacitor converter. IEEE Trans. Industr. Electron. 56(6), 1839–1846 (2009)CrossRefGoogle Scholar
  74. 74.
    A. Linder, R. Kennel, Model predictive control for electrical drives, in Proceedings of the IEEE Power Electronics Specialists Conference (PESC), (Recife, Brazil, 2005), pp. 1793–1799Google Scholar
  75. 75.
    K.S. Low, X. Zhuang, Robust model predictive control and observer for direct drive applications. IEEE Trans. Power Electron. 15(6), 1018–1028 (2000)CrossRefGoogle Scholar
  76. 76.
    J.M. Maciejowski, Predictive Control with Constraints (Prentice-Hall, Englewood Cliffs, 2002)Google Scholar
  77. 77.
    L. Malesani, P. Mattavelli, S. Buso, Robust dead-beat current control for PWM rectifiers and active filters. IEEE Trans. Ind. Appl. 35(3), 613–620 (1999)CrossRefGoogle Scholar
  78. 78.
    S. Mariéthoz, S. Almér, M. Bâja, A. Beccuti, D. Patino, A. Wernrud, J. Buisson, H. Cormerais, H. Fujioka, T. Geyer, U. Jönsson, C.Y. Kao, M. Morari, G. Papafotiou, A. Rantzer, P. Riedinger, Comparison of hybrid control techniques for buck and boost DC-DC converters. IEEE Trans. Control Syst. Technol. 18(5), 1126–1145 (2010)CrossRefGoogle Scholar
  79. 79.
    S. Mariethoz, A. Beccuti, G. Papafotiou, M. Morari, Sensorless explicit model predictive control of the dc-dc buck converter with inductor current limitation, in Proceedings of the Applied Power Electronics Conference and Exposition (2008), pp. 1710–1715Google Scholar
  80. 80.
    S. Mariéthoz, A. Domahidi, M. Morari, High-bandwidth explicit model predictive control of electrical drives. IEEE Trans. Ind. Appl. 48(6), 1980–1992 (2012)CrossRefGoogle Scholar
  81. 81.
    S. Mariéthoz, M. Morari, Explicit model predictive control of a PWM inverter with an LCL filter. IEEE Trans. Industr. Electron. 56(2), 389–399 (2009)CrossRefGoogle Scholar
  82. 82.
    P. Mattavelli, An improved deadbeat control for UPS using disturbance observers. IEEE Trans. Industr. Electron. 52(1), 206–212 (2005)CrossRefGoogle Scholar
  83. 83.
    D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O.M. Scokaert, Constrained model predictive control: Optimality and stability. Automatica 36(6), 789–814 (2000)CrossRefMATHMathSciNetGoogle Scholar
  84. 84.
    L.G. Mitten, Branch–and–bound methods: General formulation and properties. Op. Res. 18(1), 24–34 (1970)CrossRefMATHMathSciNetGoogle Scholar
  85. 85.
    Y.A.R.I. Mohamed, E.F. El-Saadany, An improved deadbeat current control scheme with a novel adaptive self-tuning load model for a three-phase PWM voltage-source inverter. IEEE Trans. Industr. Electron. 54(2), 747–759 (2007)CrossRefGoogle Scholar
  86. 86.
    J. Mossoba, P.W. Lehn, A controller architecture for high bandwidth active power filters. IEEE Trans. Power Electron. 18(1), 317–325 (2003)CrossRefGoogle Scholar
  87. 87.
    T. Murata, T. Tsuchiya, I. Takeda, Vector control for induction machine on the application of optimal control theory. IEEE Trans. Industr. Electron. 37(4), 283–290 (1990)CrossRefGoogle Scholar
  88. 88.
    Y. Nesterov, A method of solving a convex programming problem with convergence rate O(1/k2). Soviet Math. Dokl. 27(2), 372–386 (1983)MATHGoogle Scholar
  89. 89.
    Y. Nesterov, A. Nemirovskii, Interior-point polynomial algorithms in convex programming. SIAM (1994)Google Scholar
  90. 90.
    Y. Nishida, O. Miyashita, T. Haneyoshi, H. Tomita, A. Maeda, A predictive instantaneous-current PWM controlled rectifier with AC-side harmonic current reduction. IEEE Trans. Industr. Electron. 44(3), 337–343 (1997)CrossRefGoogle Scholar
  91. 91.
    N. Oikonomou, C. Gutscher, P. Karamanakos, F. Kieferndorf, T. Geyer, Model predictive pulse pattern control for the five-level active neutral point clamped inverter. IEEE Trans. Ind. Appl. 49(6), 2583–2592, Raleigh, NC, USA (2013)Google Scholar
  92. 92.
    J. Østergaard, D.E. Quevedo, J. Jensen, Real-time perceptual moving-horizon multiple-description audio coding. IEEE Trans. Signal Process. 59(9), 4286–4299 (2011)Google Scholar
  93. 93.
    G. Papafotiou, T. Geyer, M. Morari, Optimal direct torque control of three-phase symmetric induction motors, in Proceedings of the IEEE Conference on Decision and Control, Atlantis, Bahamas (2004)Google Scholar
  94. 94.
    G. Papafotiou, T. Geyer, M. Morari, A hybrid model predictive control approach to the direct torque control problem of induction motors (invited paper). Int. J. Robust Nonlinear Control 17(17), 1572–1589 (2007)CrossRefMATHMathSciNetGoogle Scholar
  95. 95.
    G. Papafotiou, J. Kley, K.G. Papadopoulos, P. Bohren, M. Morari, Model predictive direct torque control–Part II: Implementation and experimental evaluation. IEEE Trans. Industr. Electron. 56(6), 1906–1915 (2009)CrossRefGoogle Scholar
  96. 96.
    H.S. Patel, R.G. Hoft, Generalized techniques of harmonic elimination and voltage control in thyristor inverters: Part I-Harmonic elimination. IEEE Trans. Ind. Appl. 9(3), 310–317 (1973)CrossRefGoogle Scholar
  97. 97.
    S.J. Qin, T.A. Badgwell, A survey of industrial model predictive control technology. Contr. Eng. Pract. 11, 733–764 (2003)CrossRefGoogle Scholar
  98. 98.
    D.E. Quevedo, R.P. Aguilera, M.A. Pérez, P. Cortés, R. Lizana, Model predictive control of an AFE rectifier with dynamic references. IEEE Trans. Power Electron. 27(7), 3128–3136 (2012)CrossRefGoogle Scholar
  99. 99.
    D.E. Quevedo, H. Bölcskei, G.C. Goodwin, Quantization of filter bank frame expansions through moving horizon optimization. IEEE Trans. Signal Process. 57(2), 503–515 (2009)CrossRefMathSciNetGoogle Scholar
  100. 100.
    D.E. Quevedo, G.C. Goodwin, Control of EMI from switch-mode power supplies via multi-step optimization, in Proceedings of the American Control Conference, vol. 1, pp. 390–395. Boston, MA (2004)Google Scholar
  101. 101.
    D.E. Quevedo, G.C. Goodwin, Moving horizon design of discrete coefficient FIR filters. IEEE Trans. Signal Process. 53(6), 2262–2267 (2005)CrossRefMathSciNetGoogle Scholar
  102. 102.
    D.E. Quevedo, G.C. Goodwin, Multistep optimal analog-to-digital conversion. IEEE Trans. Circuits Syst. I 52(4), 503–515 (2005)CrossRefGoogle Scholar
  103. 103.
    D.E. Quevedo, G.C. Goodwin, J.A. De Doná, Finite constraint set receding horizon quadratic control. Int. J. Robust Nonlin. Contr. 14(4), 355–377 (2004)CrossRefMATHGoogle Scholar
  104. 104.
    D.E. Quevedo, G.C. Goodwin, J.A. De Doná, Multistep detector for linear ISI-channels incorporating degrees of belief in past estimates. IEEE Trans. Commun. 55(11), 2092–2103 (2007)CrossRefGoogle Scholar
  105. 105.
    D.E. Quevedo, D. Nešić, Robust stability of packetized predictive control of nonlinear systems with disturbances and Markovian packet losses. Automatica 48(8), 1803–1811 (2012)CrossRefMATHMathSciNetGoogle Scholar
  106. 106.
    D.E. Quevedo, J. Østergaard, D. Nešić, Packetized predictive control of stochastic systems over bit-rate limited channels with packet loss. IEEE Trans. Autom. Control 56(12), 2854–2868 (2011)Google Scholar
  107. 107.
    J.B. Rawlings, D.Q. Mayne, Model Predictive Control: Theory and Design (Nob Hill Publishing, Madison, 2009)Google Scholar
  108. 108.
    S. Richter, C. Jones, M. Morari, Real-time input-constrained MPC using fast gradient methods, in Proceedings of the IEEE Conference on Decision and Control, pp. 7387–7393. Shanghai, China (2009)Google Scholar
  109. 109.
    S. Richter, S. Mariéthoz, M. Morari, High-speed online MPC based on fast gradient method applied to power converter control, in Proceedings of the American Control Conference, Baltimore, MD, USA (2010)Google Scholar
  110. 110.
    J. Rodríguez, P. Cortés, Predictive Control of Power Converters and Electrical Drives, 1 edn. (Wiley-IEEE Press, Chichester, 2012)Google Scholar
  111. 111.
    J. Rodríguez, M.P. Kazmierkowski, J. Espinoza, P. Zanchetta, H. Abu-Rub, H.A. Young, C.A. Rojas, State of the art of finite control set model predictive control in power electronics. IEEE Trans. Industr. Inf. 9(2), 1003–1016 (2013)CrossRefGoogle Scholar
  112. 112.
    J. Rodríguez, J. Pontt, C. Silva, P. Correa, P. Lezana, P. Cortés, U. Ammann, Predictive current control of a voltage source inverter. IEEE Trans. Industr. Electron. 54(1), 495–503 (2007)CrossRefGoogle Scholar
  113. 113.
    S. Saggini, W. Stefanutti, E. Tedeschi, P. Mattavelli, Digital deadbeat control tuning for dc-dc converters using error correlation. IEEE Trans. Power Electron. 22(4), 1566–1570 (2007)CrossRefGoogle Scholar
  114. 114.
    J. Scoltock, T. Geyer, U. Madawala, A comparison of model predictive control schemes for MV induction motor drives. IEEE Trans. Industr. Inf. 9(2), 909–919 (2013)CrossRefGoogle Scholar
  115. 115.
    M. Serón, G.C. Goodwin, J.A. De Doná, Characterisation of receding horizon control for constrained linear systems. Asian J. Contr. 5(2), 271–286 (2003)CrossRefGoogle Scholar
  116. 116.
    E. Sontag, Nonlinear regulation: The piecewise linear approach. IEEE Trans. Autom. Control 26(2), 346–358 (1981)CrossRefMATHMathSciNetGoogle Scholar
  117. 117.
    P. Stolze, P. Landsmann, R. Kennel, T. Mouton, Finite-set model predictive control of a flying capacitor converter with heuristic voltage vector preselection, in Proceedings of the IEEE International Conference on Power Electronics and ECCE Asia (2011)Google Scholar
  118. 118.
    J. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones (1998)Google Scholar
  119. 119.
    I. Takahashi, T. Noguchi, A new quick response and high efficiency control strategy for the induction motor. IEEE Trans. Ind. Appl. 22(2), 820–827 (1986)CrossRefGoogle Scholar
  120. 120.
    P. Tøndel, T.A. Johansen, A. Bemporad, An algorithm for multi-parametric quadratic programming and explicit MPC solutions, in Proceedings of the IEEE Conference on Decision and Control, Orlando, Florida (2001)Google Scholar
  121. 121.
    P. Tøndel, T.A. Johansen, A. Bemporad, Evaluation of piecewise affine control via binary search tree. Automatica 39(5), 945–950 (2003)CrossRefMathSciNetGoogle Scholar
  122. 122.
    F.D. Torrisi, A. Bemporad, Hysdel – a tool for generating computational hybrid models for analysis and synthesis problems. IEEE Trans. Control Syst. Technol. 12(2), 235–249 (2004)CrossRefMathSciNetGoogle Scholar
  123. 123.
    A. Wächter, L. Biegler, On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)CrossRefMATHMathSciNetGoogle Scholar
  124. 124.
    S.M. Yang, C.H. Lee, A deadbeat current controller for field oriented induction motor drives. IEEE Trans. Power Electron. 17(5), 772–778 (2002)CrossRefGoogle Scholar
  125. 125.
    Y. Zeinaly, T. Geyer, B. Egardt, Trajectory extension methods for model predictive direct torque control, in Proceedings of the Applied Power Electronics Conference and Exposition, pp. 1667–1674. Fort Worth, TX, USA (2011)Google Scholar
  126. 126.
    Q. Zeng, L. Chang, An advanced svpwm-based predictive current controller for three-phase inverters in distributed generation systems. IEEE Trans. Industr. Electron. 55(3), 1235–1246 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Daniel E. Quevedo
    • 1
  • Ricardo P. Aguilera
    • 1
  • Tobias Geyer
    • 2
  1. 1.School of Electrical Engineering and Computer ScienceThe University of NewcastleCallaghanAustralia
  2. 2.ABB Corporate ResearchABB Switzerland Ltd, Power Electronic SystemsBaden-DättwilSwitzerland

Personalised recommendations