Advertisement

An Innovative Financial Time Series Model: The Geometric Process Model

  • Jennifer S. K. ChanEmail author
  • Connie P. Y. Lam
  • S. T. Boris Choy
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 251)

Abstract

Geometric Process (GP) model is proposed as an alternative model for financial time series. The model contains two components: the mean of an underlying renewal process and the ratio which measures the direction and strength of the dynamic trend pattern over time. They simultaneously account for the uncertainty on the mean and the autoregressive and time-varying nature of the volatility. Compare to the popular GARCH and SV models, this model is simple and easy to implement using the least squares (LS) method.We extend the GP model to analyze the daily asset price range which exhibit threshold and asymmetric effects for some exogenous variables. Models are selected according to mean square error (MSE). Finally forecasting are performed for the best model that allows for both threshold and asymmetric effects.

Keywords

Mean Square Error Severe Acute Respiratory Syndrome Stochastic Volatility GARCH Model Severe Acute Respiratory Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersen, T., Bollerslev, T.: Answering the skeptics: yes, standard volatility models do provide accurate forecasts. International Economic Review 39, 885–905 (1998)CrossRefGoogle Scholar
  2. 2.
    Bollerslev, T.: Generalized autoregressive conidtional heteroskedasticity. Journal of Econometrics 31, 307–327 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brandt, M.W., Jones, C.S.: Volatility forecasting with range-based EGARCH models. Journal of Business and Economic Statistics 24, 470–486 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chan, J.S.K., Lam, Y., Leung, D.Y.P.: Statistical inference for geometric processes with gamma distributions. Computional Statistics and Data Analysis 47, 565–581 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chan, J.S.K., Yu, P.L.H., Lam, Y., Ho, A.P.K.: Modeling SARS data using threshold geometric process. Statistics in Medicine 25, 1826–1839 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chan, J.S.K., Leung, D.Y.P.: A new approach to the modelling longitudinal binary data with trend: the binary geometric process model. Computational Statistics 25, 505–536 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chan, J.S.K., Lam, C.P.Y., Yu, P.L.H., Choy, S.T.B., Chen, C.W.S.: A Bayesian conditional autoregressive geometric process model for range data. Computational Statistics and Data Analysis 56, 3006–3019 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chen, C.W.S., Gerlach, R.H., Lin, E.M.H.: Forecast volatility from threshold heteroskedastic range models. Computational Statistics and Data Analysis, on Statistical & Computational Methods in Finance 52, 2990–3010 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chou, R.: Forecasting Financial Volatilities With Extreme Values: The Conditional Autoregressive Range (CARR) Model. Journal of Money Credit and Banking 37, 561–582 (2005)CrossRefGoogle Scholar
  10. 10.
    Engle, R.F.: Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50, 987–1008 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Feller, W.: Fluctuation theory of recurrent events. Transactions of the American Mathematical Society 67, 98–119 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Garman, M.B., Klass, M.J.: On the estimation of price volatility from historical data. Journal of Business 53, 67–78 (1980)CrossRefGoogle Scholar
  13. 13.
    Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov Chain Monte Carlo in Practice. Chapman and Hall, UK (1996)CrossRefzbMATHGoogle Scholar
  14. 14.
    Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies 6, 327–343 (1993)CrossRefGoogle Scholar
  15. 15.
    Hull, J.C., White, A.: An analysis of the bias in option pricing caused by by a stochastic volatility. Advances in Futures and Options Research 3, 29–61 (1988)Google Scholar
  16. 16.
    Lam, Y.: Geometric process and replacement problem. Acta Mathematicae Applicatae Sinica 4, 366–377 (1988)CrossRefzbMATHGoogle Scholar
  17. 17.
    Lam, Y.: Nonparametric inference for geometric processes. Commun. Statist. Theory Meth. 21, 2083–2105 (1992)CrossRefzbMATHGoogle Scholar
  18. 18.
    Lam, Y., Chan, J.S.K.: Statistical inference for geometric processes with lognormal distribution. Computional Statistics and Data Analysis 27, 99–112 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lam, Y.: The Geometric Process and it’s applications. World Scientific Publishing Co. Pte. Ltd. (2007)Google Scholar
  20. 20.
    Parkinson, M.: The extreme value method for estimating the variance of the rate of return. Journal of Business 53, 61–65 (1980)CrossRefGoogle Scholar
  21. 21.
    Smith, A.F.M., Roberts, G.O.: Bayesian Computation via the Gibbs Sampler and Related Markov Chain Monte Carlo Methods. Journal of the Royal Statistical Society B 55, 3–23 (1993)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Spiegelhalter, D., Thomas, A., Best, N.: Bayesian inference using Gibbs sampling for Window version (2000), The website for WinBUGS is http://www.mrc-bsu.cam.ac/bugs
  23. 23.
    Spiegelhalter, D., Best, N.G., Carlin, B.P., Van der Linde, A.: Bayesian Measures of Model Complexity and Fit (with Discussion). Journal of the Royal Statistical Society B 64, 583–616 (2002)CrossRefzbMATHGoogle Scholar
  24. 24.
    Wan, W.Y., Chan, J.S.K.: A new approach for handling longitudinal count data with zero inflation and overdispersion: Poisson Geometric Process model. Biometrical Journal 51, 556–570 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wan, W.Y., Chan, J.S.K.: Bayesian analysis of robust Poisson geometric process model using heavy-tailed distributions. Computational Statistics and Data Analysis 55, 687–702 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jennifer S. K. Chan
    • 1
    Email author
  • Connie P. Y. Lam
    • 1
  • S. T. Boris Choy
    • 1
  1. 1.School of Mathematics and StatisticsThe University of SydneySydneyAustralia

Personalised recommendations