An Ontology-Based Technique for Online Profile Resolution

  • Keith Cortis
  • Simon Scerri
  • Ismael Rivera
  • Siegfried Handschuh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8238)


Instance matching targets the extraction, integration and matching of instances referring to the same real-world entity. In this paper we present a weighted ontology-based user profile resolution technique which targets the discovery of multiple online profiles that refer to the same person identity. The elaborate technique takes into account profile similarities at both the syntactic and semantic levels, employing text analytics on top of open data knowledge to improve its performance. A two-staged evaluation of the technique performs various experiments to determine the best out of alternative approaches. These results are then considered in an improved algorithm, which is evaluated by real users, based on their real social network data. Here, a profile matching precision rate of 0.816 is obtained. The presented Social Semantic Web technique has a number of useful applications, such as detection of untrusted known persons behind anonymous profiles, and information sharing management across multiple social networks.


profile resolution person identity named entity recognition semantic relatedness social networks linked open data social semantic web 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Araújo, S., Hidders, J., Schwabe, D., de Vries, A.P.: Serimi - resource description similarity, rdf instance matching and interlinking. CoRR, abs/1107.1104 (2011)Google Scholar
  2. 2.
    Bartunov, S., Korshunov, A., Park, S.-T., Ryu, W., Lee, H.: Joint link-attribute user identity resolution in online social networks. In: SNA-KDD 2012 at KDD 2012, Beijing, China (2012)Google Scholar
  3. 3.
    Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., Fienberg, S.: Adaptive name matching in information integration. IEEE Intelligent Systems 18(5), 16–23 (2003)CrossRefGoogle Scholar
  4. 4.
    Bourimi, M., Scerri, S., Cortis, K., Rivera, I., Heupel, M., Thiel, S.: Integrating multi-source user data to enhance privacy in social interaction. In: INTERACCION 2012, pp. 51:1–51:7 (2012)Google Scholar
  5. 5.
    Castano, S., Ferrara, A., Montanelli, S., Varese, G.: Ontology and instance matching. In: Paliouras, G., Spyropoulos, C.D., Tsatsaronis, G. (eds.) Multimedia Information Extraction. LNCS, vol. 6050, pp. 167–195. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Cortis, K., Scerri, S., Rivera, I., Handschuh, S.: Discovering semantic equivalence of people behind online profiles. In: RED 2012 at ESWC 2012, Heraklion, Greece, pp. 104–118 (2012)Google Scholar
  7. 7.
    Cortis, K., Scerri, S., Rivera, I., Handschuh, S.: Techniques for the identification of semantically-equivalent online identities. In: Lacroix, Z., Ruckhaus, E., Vidal, M.-E. (eds.) RED 2012. LNCS, vol. 8194, pp. 1–22. Springer, Heidelberg (2013)Google Scholar
  8. 8.
    Cross, V.: Fuzzy semantic distance measures between ontological concepts. In: NAFIPS 2004, vol. 2, pp. 635–640 (June 2004)Google Scholar
  9. 9.
    Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework and Graphical Development Environment for Robust NLP Tools and Applications. In: ACL 2002 (2002)Google Scholar
  10. 10.
    Dorneles, C.F., Gonçalves, R., dos Santos Mello, R.: Approximate data instance matching: a survey. Knowl. Inf. Syst. 27(1), 1–21 (2011)CrossRefGoogle Scholar
  11. 11.
    Ferrara, A., Lorusso, D., Montanelli, S., Varese, G.: Towards a benchmark for instance matching. In: OM. CEUR Workshop Proceedings, vol. 431. (2008)Google Scholar
  12. 12.
    Monge, A., Elkan, C.: The field matching problem: Algorithms and applications. In: KDD 1996, pp. 267–270 (1996)Google Scholar
  13. 13.
    Raad, E., Chbeir, R., Dipanda, A.: User profile matching in social networks. In: NBiS, Takayama, Gifu, Japan, 2010, pp. 297–304. IEEE Computer Society (2010)Google Scholar
  14. 14.
    Shen, W., Wang, J., Luo, P., Wang, M.: Linden: linking named entities with knowledge base via semantic knowledge. In: WWW 2012, pp. 449–458. ACM, New York (2012)Google Scholar
  15. 15.
    Veldman, I.: Matching profiles from social network sites: Similarity calculations with social network support. In: Master Thesis, University of Twente (2009)Google Scholar
  16. 16.
    Vosecky, D., Hong, J., Shen, V.Y.: User identification across multiple social networks. In: Proc. of the Int. Conference on Networked Digital Technologies (NDT 2009), pp. 360–365 (2009)Google Scholar
  17. 17.
    You, G., Park, J., Hwang, S., Nie, Z., Wen, J.: Socialsearch+: enriching social network with web evidences. World Wide Web (May 2012)Google Scholar
  18. 18.
    Zhou, W., Wang, H., Chao, J., Zhang, W., Yu, Y.: LODDO: Using linked open data description overlap to measure semantic relatedness between named entities. In: Pan, J.Z., Chen, H., Kim, H.-G., Li, J., Wu, Z., Horrocks, I., Mizoguchi, R., Wu, Z. (eds.) JIST 2011. LNCS, vol. 7185, pp. 268–283. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Keith Cortis
    • 1
  • Simon Scerri
    • 1
  • Ismael Rivera
    • 1
  • Siegfried Handschuh
    • 1
  1. 1.Digital Enterprise Research InstituteNational University of IrelandGalwayIreland

Personalised recommendations