Predicting User’s Political Party Using Ideological Stances

  • Swapna Gottipati
  • Minghui Qiu
  • Liu Yang
  • Feida Zhu
  • Jing Jiang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8238)

Abstract

Predicting users political party in social media has important impacts on many real world applications such as targeted advertising, recommendation and personalization. Several political research studies on it indicate that political parties’ ideological beliefs on sociopolitical issues may influence the users political leaning. In our work, we exploit users’ ideological stances on controversial issues to predict political party of online users. We propose a collaborative filtering approach to solve the data sparsity problem of users stances on ideological topics and apply clustering method to group the users with the same party. We evaluated several state-of-the-art methods for party prediction task on debate.org dataset. The experiments show that using ideological stances with Probabilistic Matrix Factorization (PMF) technique achieves a high accuracy of 88.9% at 22.9% data sparsity rate and 80.5% at 70% data sparsity rate on users’ party prediction task.

Keywords

Collaborative Filtering Ideological Stances Memory-based CF Model-based CF Probabilistic Matrix Factorization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benevenuto, F., Rodrigues, T., Cha, M., Almeida, V.: Characterizing user behavior in online social networks. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement Conference, pp. 49–62 (2009)Google Scholar
  2. 2.
    Yan, X., Yan, L.: Gender classification of weblog authors. In: AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs, pp. 228–230 (2006)Google Scholar
  3. 3.
    Peersman, C., Daelemans, W., Vaerenbergh, L.V.: Predicting age and gender in online social networks. In: SMUC, pp. 37–44 (2011)Google Scholar
  4. 4.
    Conover, M., Gonçalves, B., Ratkiewicz, J., Flammini, A., Menczer, F.: Predicting the political alignment of twitter users. In: Proceedings of 3rd IEEE Conference on Social Computing, SocialCom (2011)Google Scholar
  5. 5.
    Speel, R.W.: The evolution of republican and democratic ideologies. Journal of Policy History 12(7), 413–416 (2000)CrossRefGoogle Scholar
  6. 6.
    Saunders, K., Abramowitz, A.: Ideological realignment and active partisans in the american electorate. American Politics Research 32(3), 285–309 (2004)CrossRefGoogle Scholar
  7. 7.
    Fiorina, M.P., Abrams, S.J.: Political polarization in the american public. Annual Review of Political Science 11(1), 563–588 (2008)CrossRefGoogle Scholar
  8. 8.
    Killian, M., Wilcox, C.: Do abortion attitudes lead to party switching? Political Research Quarterly 61(4), 561–573 (2008)CrossRefGoogle Scholar
  9. 9.
    Somasundaran, S., Wiebe, J.: Recognizing stances in ideological on-line debates. In: Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, pp. 116–124 (2010)Google Scholar
  10. 10.
    Walker, M.A., Anand, P., Abbott, R., Tree, J.E.F., Martell, C., King, J.: That is your evidence?: Classifying stance in online political debate. Decis. Support Syst. 53(4), 719–729 (2012)CrossRefGoogle Scholar
  11. 11.
    Ma, H., Yang, H., Lyu, M.R., King, I.: Sorec: Social recommendation using probabilistic matrix factorization. In: Proc. of CIKM (2008)Google Scholar
  12. 12.
    Pan, R., Zhou, Y., Cao, B., Liu, N.N., Lukose, R., Scholz, M., Yang, Q.: One-class collaborative filtering. In: ICDM 2008 (2008)Google Scholar
  13. 13.
    Singh, A.P., Gordon, G.J.: Relational learning via collective matrix factorization. In: Proceedings of the 14th KDD, pp. 650–658 (2008)Google Scholar
  14. 14.
    Rao, D., Yarowsky, D., Shreevats, A., Gupta, M.: Classifying latent user attributes in twitter. In: Proceedings of the 2nd International Workshop on Search and Mining User-generated Contents, pp. 37–44 (2010)Google Scholar
  15. 15.
    Mukherjee, A.: 0001, B.L.: Improving gender classification of blog authors. In: EMNLP, pp. 207–217 (2010)Google Scholar
  16. 16.
    Zhou, D.X., Resnick, P., Mei, Q.: Classifying the political leaning of news articles and users from user votes. In: ICWSM (2011)Google Scholar
  17. 17.
    Dahllöf, M.: Automatic prediction of gender, political affiliation, and age in swedish politicians from the wording of their speeches - a comparative study of classifiability. LLC 27(2), 139–153 (2012)Google Scholar
  18. 18.
    Durant, K.T., Smith, M.D.: Predicting the political sentiment of web log posts using supervised machine learning techniques coupled with feature selection. In: Nasraoui, O., Spiliopoulou, M., Srivastava, J., Mobasher, B., Masand, B. (eds.) WebKDD 2006. LNCS (LNAI), vol. 4811, pp. 187–206. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Durant, K.T., Smith, M.D.: Mining sentiment classification from political web logs. In: Proceedings of Workshop on Web Mining and Web Usage Analysis of the 12th SIGKDD, WebKDD 2006 (2006)Google Scholar
  20. 20.
    Efron, M.: Using cocitation information to estimate political orientation in web documents. Knowl. Inf. Syst. 9(4) (2006)Google Scholar
  21. 21.
    Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets to polls: Linking text sentiment to public opinion time series. In: Proceedings of ICWSM (2010)Google Scholar
  22. 22.
    Abu-Jbara, A., Radev, D.: Subgroup detector: a system for detecting subgroups in online discussions. In: Proc. of the ACL 2012 Demo, pp. 133–138 (2012)Google Scholar
  23. 23.
    Hassan, A., Abu-Jbara, A., Radev, D.: Detecting subgroups in online discussions by modeling positive and negative relations among participants. In: Proceedings of the 2012 Joint Conference on EMNLP and CoNLL (2012)Google Scholar
  24. 24.
    Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008(10) (2008)Google Scholar
  25. 25.
    Traag, V., Bruggeman, J.: Community detection in networks with positive and negative links. Physical Review E 80(3), 036115 (2009)Google Scholar
  26. 26.
    Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open architecture for collaborative filtering of netnews. In: CSCW, pp. 175–186 (1994)Google Scholar
  27. 27.
    Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: Advances in Neural Information Processing Systems (NIPS), vol. 20 (2008)Google Scholar
  28. 28.
    Qiu, M., Yang, L., Jiang, J.: Mining user relations from online discussions using sentiment analysis and probabilistic matrix factorization. In: NAACL, pp. 401–410. Association for Computational Linguistics (2013)Google Scholar
  29. 29.
    Yang, S.H., Long, B., Smola, A., Sadagopan, N., Zheng, Z., Zha, H.: Like like alike: joint friendship and interest propagation in social networks. In: WWW (2011)Google Scholar
  30. 30.
    Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. In: Artif. Intell. 2009, 4:2–4:2 (January 2009)Google Scholar
  31. 31.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Itembased collaborative filtering recommendation algorithms. In: WWW, pp. 285–295 (2001)Google Scholar
  32. 32.
    Lemire, D., Maclachlan, A.: Slope one predictors for online rating-based collaborative filtering. In: Proceedings of SIAM Data Mining, SDM 2005 (2005)Google Scholar
  33. 33.
    Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)CrossRefMATHGoogle Scholar
  34. 34.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Incremental singular value decomposition algorithms for highly scalable recommender systems. In: Fifth International Conference on Computer and Information Science, pp. 27–28 (2002)Google Scholar
  35. 35.
    Srebro, N., Jaakkola, T.: Weighted low rank approximation. In: ICML (2003)Google Scholar
  36. 36.
    Salakhutdinov, R., Mnih, A.: Bayesian probabilistic matrix factorization using markov chain monte carlo. In: ICML (2008)Google Scholar
  37. 37.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press (2008)Google Scholar
  38. 38.
    Abu-Jbara, A., Diab, M., Dasigi, P., Radev, D.: Subgroup detection in ideological discussions. In: Proceedings of the 50th ACL, pp. 399–409 (2012)Google Scholar
  39. 39.
    Glaeser, E.L., Ponzetto, G.A.M., Shapiro, J.M.: Strategic extremism: Why republicans and democrats divide on religious values. The Quarterly Journal of Economics 120(4), 1283–1330 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Swapna Gottipati
    • 1
  • Minghui Qiu
    • 1
  • Liu Yang
    • 1
    • 2
  • Feida Zhu
    • 1
  • Jing Jiang
    • 1
  1. 1.School of Information SystemsSingapore Management UniversitySingapore
  2. 2.School of Software and MicroelectronicsPeking UniversityChina

Personalised recommendations