Membrane Systems and Tools Combining Dynamical Structures with Reaction Kinetics for Applications in Chronobiology

  • Thomas Hinze
  • Jörn Behre
  • Christian Bodenstein
  • Gabi Escuela
  • Gerd Grünert
  • Petra Hofstedt
  • Peter Sauer
  • Sikander Hayat
  • Peter Dittrich
Part of the Emergence, Complexity and Computation book series (ECC, volume 7)


This chapter addresses three coordinated chronobiological studies demonstrating the convergence of experimental observations, fine-grained spatio-temporal modelling, and predictive simulation. Due to the discrete manner of molecular assembly in cell signalling and gene regulation, we define a framework of membrane systems equipped with discretised forms of reaction kinetics in concert with variable intramolecular structures. Our first study is dedicated to circadian clocks inducing daily biological rhythms. As an inspiring example, the KaiABC core oscillator reaches its functionality by cyclically varying protein structures. Within our second study, we present a meta-model of an entire circadian clockwork able to adapt its oscillation to an external stimulus in terms of a frequency control system acting in a phase-locked loop. Substrate concentration courses resulting from gene expression reflect its oscillatory behaviour utilised in a periodical trigger for subsequent processes. In this context, our third study cytometrically quantifies the dynamical behaviour of a bistable toggle switch resulting from mutual gene regulation.


Circadian Clock Gene Regulatory Network Membrane System Derivation Tree Reaction Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    B. Alberts, Essential Cell Biology (Garland Publishing, London, 2003)Google Scholar
  2. 2.
    U. Albrecht, The Circadian Clock (Springer Verlag, New York, 2010)CrossRefGoogle Scholar
  3. 3.
    U. Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman and Hall, Boca Raton, 2006)Google Scholar
  4. 4.
    A.P. Arkin, Synthetic cell biology. Curr. Opin. Biotechnol. 12(6), 638–644 (2011)CrossRefGoogle Scholar
  5. 5.
    I.M. Axmann, S. Legewie, H. Herzel, A minimal circadian clock model. Genome Inf. 18, 54–64 (2007)Google Scholar
  6. 6.
    N. Barbacari, A. Profir, C. Zelinschi, Gene regulatory network modelling by means of membrane systems, in 7th International Workshop on Membrane Computing WMC 2006, ed. by H.J. Hoogeboom, G. Păun, G. Rozenberg, A. Salomaa, vol. 4361 (LNCS, 2006), pp. 162–178Google Scholar
  7. 7.
    J. Behre, S. Schuster, Modeling signal transduction in enzyme cascades with the concept of elementary flux modes. J. Comput. Biol. 16(6), 829–844 (2009)CrossRefGoogle Scholar
  8. 8.
    B.W. Bequette, Process Control: Modeling, Design, and Simulation (Prentice Hall, Upper Saddle River, 2003)Google Scholar
  9. 9.
    F. Bernardini, V. Manca, Dynamical aspects of P systems. BioSystems 70, 85–93 (2003)CrossRefGoogle Scholar
  10. 10.
    R.E. Best, Phase-Locked Loops: Design, Simulation, and Applications (McGraw-Hill, New York, 2007)Google Scholar
  11. 11.
    M.L. Blinov, J.R. Faeder, B. Goldstein, W.S. Hlavacek, BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20, 3289–3292 (2004)CrossRefGoogle Scholar
  12. 12.
    M.L. Blinov, J.R. Faeder, B. Goldstein, W.S. Hlavacek, A network model of early events in epidermal growth factor receptor signaling that accounts for combinatorial complexity. BioSystems 83, 136–151 (2006)CrossRefGoogle Scholar
  13. 13.
    N. Busi, C. Zandron, Computing with genetic gates, proteins and membranes, in 7th International Workshop on Membrane Computing WMC 2006, ed. by H.J. Hoogeboom, G. Păun, G. Rozenberg, A. Salomaa, vol. 4361 (LNCS, 2006), pp. 213–228Google Scholar
  14. 14.
    K.A. Connors, Chemical Kinetics (VCH Publishers, New York, 1990)Google Scholar
  15. 15.
    P. Dittrich, J. Ziegler, W. Banzhaf, Artificial chemistries—a review. Artif. Life 7(3), 225–275 (2001)CrossRefGoogle Scholar
  16. 16.
    F. Fontana, V. Manca, Discrete solutions to differential equations by metabolic P systems. Theor. Comput. Sci. 372(2–3), 165–182 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    P. Frisco, Computing with Cells. Advances in Membrane Computing (Oxford University Press, Oxford, 2009)CrossRefzbMATHGoogle Scholar
  18. 18.
    T.S. Gardner, C.R. Cantor, J.J. Collins, Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000)CrossRefGoogle Scholar
  19. 19.
    D.T. Gillespie, Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  20. 20.
    D.T. Gillespie, A rigorous derivation of the chemical master equation. Physica A 188(1–3), 404–425 (1992)CrossRefMathSciNetGoogle Scholar
  21. 21.
    S.S. Golden, V.M. Cassone, A. LiWang, Shifting nanoscopic clock gears. Nat. Struct. Mol. Biol. 14, 362–363 (2007)CrossRefGoogle Scholar
  22. 22.
    B.C. Goodwin, Oscillatory behaviour in enzymatic control processes. Adv. Enzyme Regul. 3, 425–438 (1965)CrossRefGoogle Scholar
  23. 23.
    G. Gruenert, B. Ibrahim, T. Lenser, M. Lohel, T. Hinze, P. Dittrich, Rule-based spatial modeling with diffusing, geometrically constrained molecules. BMC Bioinform. 11, 307 (2010)CrossRefGoogle Scholar
  24. 24.
    G. Gruenert, P. Dittrich, Using the SRSim software for spatial and rule-based modelling of combinatorially complex biochemical reaction systems, in 11th International Conference on Membrane Computing CMC 2010, ed. by M. Gheorghe, T. Hinze, G. Păun, G. Rozenberg, A. Salomaa, vol. 6501 (LNCS, 2010), pp. 240–256Google Scholar
  25. 25.
    J. Hastings, K.H. Nealson, Bacterial bioluminescence. Ann. Rev. Microbiol. 31, 549–595 (1977)CrossRefGoogle Scholar
  26. 26.
    B.A. Hawkins, H.V. Cornell, Theoretical Approaches to Biological Control (Cambridge University Press, Cambridge, 1999)CrossRefzbMATHGoogle Scholar
  27. 27.
    S. Hayat, K. Ostermann, L. Brusch, W. Pompe, G. Rödel, Towards in vivo computing: quantitative analysis of an artificial gene regulatory network behaving as an RS flip-flop, in 1st International Conference on Bio Inspired Models of Network, Information and Computing Systems BIONETICS 06, ed. by T. Suda, C. Tschudin (ACM, 2006)Google Scholar
  28. 28.
    R. Heinrich, S. Schuster, The Regulation of Cellular Systems (Springer-Verlag, 2006)Google Scholar
  29. 29.
    T. Hinze, T. Lenser, P. Dittrich, A protein substructure based P system for description and analysis of cell signalling networks, in 7th International Workshop on Membrane Computing WMC 2006, ed. by H.J. Hoogeboom, G. Păun, G. Rozenberg, A. Salomaa, vol. 4361 (LNCS, 2006), pp. 409–423Google Scholar
  30. 30.
    T. Hinze, S. Hayat, T. Lenser, N. Matsumaru, P. Dittrich, Hill kinetics meets P systems, in 8th International Workshop on Membrane Computing WMC 2007, ed. by G. Eleftherakis, P. Kefalas, G. Păun, G. Rozenberg, A. Salomaa, vol. 4860 (LNCS, 2007), pp. 320–335Google Scholar
  31. 31.
    T. Hinze, R. Fassler, T. Lenser, P. Dittrich, Register machine computations on binary numbers by oscillating and catalytic chemical reactions modelled using mass-action kinetics. Int. J. Found. Comput. Sci. 20(3), 411–426 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    T. Hinze, T. Lenser, G. Escuela, I. Heiland, S. Schuster, Modelling signalling networks with incomplete information about protein activation states: a P system framework of the KaiABC oscillator, in 10th International Workshop on Membrane Computing WMC 2009, ed. by G. Păun, M.J. Perez-Jimenez, A. Riscos-Nunez, G. Rozenberg, A. Salomaa, vol. 5957 (LNCS, 2010), pp. 316–334Google Scholar
  33. 33.
    T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster, Chemical analog computers for clock frequency control based on P modules, in 12th International Conference on Membrane Computing CMC 2011, ed. by M. Gheorghe, G. Păun, G. Rozenberg, A. Salomaa, S. Verlan, vol. 7184 (LNCS, 2012), pp. 182–202Google Scholar
  34. 34.
    W.S. Hlavacek, J.R. Faeder, M.L. Blinov, R.G. Posner, M. Hucka, W. Fontana, Rules for modeling signal-transduction systems. Sci. STKE 344, re6 (2006)Google Scholar
  35. 35.
    P. Hofstedt, Multiparadigm Constraint Programming Languages. Series Cognitive Technologies (Springer, New York, 2011)CrossRefGoogle Scholar
  36. 36.
    W.L. Koukkari, R.B. Sothern, Introducing Biological Rhythms (Springer Verlag, Berlin, 2006)Google Scholar
  37. 37.
    N. Krasnogor, M. Gheorghe, G. Terrazas, S. Diggle, P. Williams, M. Camara, An appealing computational mechanism drawn from bacterial quorum sensing. Bull. EATCS 85, 135–148 (2005)zbMATHMathSciNetGoogle Scholar
  38. 38.
    G. Krauss, Biochemistry of Signal Transduction and Regulation (Wiley-VCH, Weinheim, 2003)CrossRefGoogle Scholar
  39. 39.
    Y. Kuramoto, Chemical Oscillations, Waves, and Turbulences (Springer Verlag, Berlin, 1984)CrossRefGoogle Scholar
  40. 40.
    T. Lenser, T. Hinze, B. Ibrahim, P. Dittrich, Towards evolutionary network reconstruction tools for systems biology, in 5th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics EvoBIO2007, ed. by E. Marchiori, J.H. Moore, J.C. Rajapakse, vol. 4447 (LNCS, 2007), pp. 132–142Google Scholar
  41. 41.
    R.D. Lewis, Control systems models for the circadian clock of the New Zealand Weta Hemideina thoracia. J. Biol. Rhythms 14, 480–485 (1999)CrossRefGoogle Scholar
  42. 42.
    M.O. Magnasco, Chemical kinetics is turing universal. Phys. Rev. Lett. 78(6), 1190–1193 (1997)CrossRefGoogle Scholar
  43. 43.
    V. Manca, L. Bianco, F. Fontana, Evolution and oscillation in P systems: applications to biological phenomena, in 5th International Workshop on Membrane Computing WMC 2004, vol. 3365 (LNCS, 2005), pp. 63–84Google Scholar
  44. 44.
    M. Marhl, M. Perc, S. Schuster, Selective regulation of cellular processes via protein cascades acting as band-pass filters for time-limited oscillations. FEBS Lett. 579(25), 5461–5465 (2005)CrossRefGoogle Scholar
  45. 45.
    M.B. Miller, B.L. Bassler, Quorum sensing in bacteria. Ann. Rev. Microbiol. 55, 165–199 (2001)CrossRefGoogle Scholar
  46. 46.
    T. Mori, D.R. Williams, M.O. Byrne, X. Qin, M. Egli, H.S. Mchaourab, P.L. Stewart, C.H. Johnson, Elucidating the ticking of an in vitro circadian clockwork. PLoS Biol. 5(4), 841–853 (2007)Google Scholar
  47. 47.
    M. Nakajima, K. Imai, H. Ito, T. Nishiwaki, Y. Murayama, Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308, 414–415 (2005)CrossRefGoogle Scholar
  48. 48.
    J. O’Neill, G. Ooijen, L.E. Dixon, C. Troein, F. Corellou, F.Y. Bouget, A.B. Reddy, A.J. Millar, Circadian rhythms persist without transcription in a eukaryote. Nature 469, 554–558 (2011)CrossRefGoogle Scholar
  49. 49.
    T. Nishiwaki, Y. Satomi, Y. Kitayama, K. Terauchi, R. Kiyohara, T. Takao, T. Kondo, A sequential program of dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria. EMBO J. 26, 4029–4037 (2007)CrossRefGoogle Scholar
  50. 50.
    D.A. Paranjpe, V.K. Sharma, Evolution of temporal order in living organisms. J. Circadian Rhythms 3, 7 (2007)CrossRefGoogle Scholar
  51. 51.
    G. Păun, Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  52. 52.
    G. Păun, Membrane Computing (Springer Verlag, Berlin, 2002)Google Scholar
  53. 53.
    T. Pavlidis, Biological Oscillators: Their Mathematical Analysis (Academic Press, New York, 1974)Google Scholar
  54. 54.
    S.J. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)CrossRefzbMATHGoogle Scholar
  55. 55.
    F. Ponten, K. Jirström, M. Uhlen, The human protein atlas: a tool for pathology. J. Pathol. 216(4), 387–393 (2008)CrossRefGoogle Scholar
  56. 56.
    F.J. Romero-Campero, M.J. Perez-Jimenez, Modelling gene expression control using P systems: the Lac Operon, a case study. Biosystems 91(3), 438–457 (2008)CrossRefGoogle Scholar
  57. 57.
    F.J. Romero-Campero, M.J. Perez-Jimenez, A model of the quorum sensing system in Vibrio fischeri using P systems. Artif. Life 14(1), 95–109 (2008)CrossRefGoogle Scholar
  58. 58.
    E. Rosato, Circadian Rhythms: Methods and Protocols (Springer-Verlag, New York, 2007)CrossRefGoogle Scholar
  59. 59.
    F. Rossi, P. van Beek, T. Walsh, Handbook of Constraint Programming (Elsevier Science, Amsterdam, 2006)zbMATHGoogle Scholar
  60. 60.
    M.R. Roussel, D. Gonze, A. Goldbeter, Modeling the differential fitness of cyanobacterial strains whose circadian oscillators have different free-running periods. J. Theor. Biol. 205(2), 321–340 (2000)CrossRefGoogle Scholar
  61. 61.
    P. Ruoff, M. Vinsjevik, C. Monnerjahn, L. Rensing, The Goodwin oscillator: on the importance of degradation reactions in the circadian clock. J. Biol. Rhythms 14(6), 469–479 (1999)CrossRefGoogle Scholar
  62. 62.
    M. Samoilov, A. Arkin, J. Ross, Signal processing by simple chemical systems. J. Phys. Chem. A 106(43), 10205–10221 (2002)CrossRefGoogle Scholar
  63. 63.
    J. Smaldon, N. Krasnogor, C. Alexander, M. Gheorghe, Liposome logic, in 11th Annual Conference on Genetic and Evolutionary Computation GECCO 2009, ed. by F. Rothlauf (ACM, 2009), pp. 161–168Google Scholar
  64. 64.
    J. Tomita, M. Nakajima, T. Kondo, H. Iwasaki, No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 307, 251–254 (2005)CrossRefGoogle Scholar
  65. 65.
    O. Wolkenhauer, S.N. Sreenath, P. Wellstead, M. Ullah, K.H. Cho, A systems and signal-oriented approach to intracellular dynamics. Biochem. Soc. Trans. 33, 507–515 (2005)CrossRefGoogle Scholar
  66. 66.
  67. 67.
    Model repository and download area. via menu item Veröffentlichungen/Publications

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thomas Hinze
    • 1
    • 2
  • Jörn Behre
    • 3
  • Christian Bodenstein
    • 2
  • Gabi Escuela
    • 2
  • Gerd Grünert
    • 2
  • Petra Hofstedt
    • 1
  • Peter Sauer
    • 1
  • Sikander Hayat
    • 4
  • Peter Dittrich
    • 2
  1. 1.Institute of Computer Science and Information and Media TechnologyBrandenburg University of TechnologyCottbusGermany
  2. 2.School of Biology and Pharmacy, Department of BioinformaticsFriedrich Schiller University of JenaJenaGermany
  3. 3.Theoretical Systems Biology GroupInstitute of Food ResearchNorwichUK
  4. 4.Department of Biochemistry and BiophysicsUniversity of StockholmStockholmSweden

Personalised recommendations