Advertisement

A Safe Kitchen for Cognitive Impaired People

  • Antonio Coronato
  • Giovanni Paragliola
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8276)

Abstract

Cognitive diseases such as Alzheimer, Parkinson, Autism, etc. affect millions of people around the world and they reduce the quality of life for the patient and their relatives. An impaired patient may show irrationally behaviors which could led him to perform abnormal and/or dangerous actions for his safety. This paper presents an approach for modeling and detecting of anomalous and dangerous situations. The proposed method adopts the Situation-awareness paradigm for the detection of anomalous situations in a kitchen environment. Test performed in laboratory and theoretic results show the validity of the approach. Future work will develop a smart kitchen able to detect risks for the patient.

Keywords

Situation-Awareness Ambient Assisted Living Intelligent Artificial Detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Segal-Gidan, F., Cherry, D., Jones, R., Williams, B., Hewett, L., Chodosh, J.: Alzheimers Disease Management Guideline: Update 2008 (2011)Google Scholar
  2. 2.
    Ye, J., Dobson, S., McKeever, S.: Situation identification techniques in pervasive computing: A review. In: Pervasive and Mobile Computing (2011) (in press, Corrected Proof), http://www.sciencedirect.com/science/article/pii/S1574119211000253
  3. 3.
    McCarthy, J.: Situations, actions, and causal laws. Stanford Artificial Intelligence Project, Stanford University, Tech. Rep. Memo 2 (1963)Google Scholar
  4. 4.
    Brumitt, B., Meyers, B., Krumm, J., Kern, A., Shafer, S.: Easyliving: Technologies for intelligent environments. In: Thomas, P., Gellersen, H.-W. (eds.) HUC 2000. LNCS, vol. 1927, pp. 12–29. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Johanson, B., Fox, O., Winograd, T.: The interactive workspaces project: Experiences with ubiquitous computing rooms. IEEE Pervasive Computing 1, 67–74 (2002)CrossRefGoogle Scholar
  6. 6.
    Cook, D., Schmitter-Edgecombe, M., Crandall, A., Sanders, C., Thomas, B.: Collecting and disseminating smart home sensor data in the casas project. In: Proc. of CHI 2009 Workshop on Developing Shared Home Behavior Datasets to Advance HCI and Ubiquitous Computing Research (2009)Google Scholar
  7. 7.
    Lei, J., Ren, X., Fox, D.: Fine-grained kitchen activity recognition using rgb-d. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, UbiComp 2012, pp. 208–211. ACM, New York (2012), http://doi.acm.org/10.1145/2370216.2370248CrossRefGoogle Scholar
  8. 8.
    Tran, Q.T., Calcaterra, G., Mynatt, E.D.: Cooks collage: Dj vu display for a home kitchen. In: Proceedings of HOIT: Home-Oriented Informatics and Telematics 2005, pp. 15–32 (2005)Google Scholar
  9. 9.
    Mozer, M.C., Dodier, R.H., Anderson, M., Vidmar, L., Iii, R.F.C., Miller, D.: The neural network house: An overview (1995)Google Scholar
  10. 10.
    Monekosso, D., Remagnino, P.: Behavior analysis for assisted living. IEEE Transactions on Automation Science and Engineering 7(4), 879–886 (2010)CrossRefGoogle Scholar
  11. 11.
    Gehrig, D., Krauthausen, P., Rybok, L., Kuehne, H., Hanebeck, U., Schultz, T., Stiefelhagen, R.: Combined intention, activity, and motion recognition for a humanoid household robot. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4819–4825 (2011)Google Scholar
  12. 12.
    Rabiner, L., Juang, B.-H.: An introduction to Midden Markov Models. IEEE ASSP Magazine 3(1), 4–16 (1986)CrossRefGoogle Scholar
  13. 13.
    Tenorth, M., Bandouch, J., Beetz, M.: The tum kitchen data set of everyday manipulation activities for motion tracking and action recognition. In: IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1089–1096 (2009)Google Scholar
  14. 14.
    Rybok, L., Friedberger, S., Hanebeck, U.D., Stiefelhagen, R.: The KIT Robo-Kitchen Data set for the Evaluation of View-based Activity Recognition Systems. In: IEEE-RAS International Conference on Humanoid Robots (2011)Google Scholar
  15. 15.
    Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. The MIT Press, Massachusetts (2001)CrossRefGoogle Scholar
  16. 16.
    Anna-Karin Lindberg, S.O.H.: Accident prevention through experience feedback from the rescue services - a study of incident reports in sweden. Safety Science Monitor 16 (2012)Google Scholar
  17. 17.
    Eclipse prolog, http://eclipseclp.org

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Antonio Coronato
    • 1
  • Giovanni Paragliola
    • 1
  1. 1.ICAR- CNR NaplesItaly

Personalised recommendations