Advertisement

E-Flow: A Communication System for User Notification in Dynamic Evacuation Scenarios

  • Augusto Morales
  • Ramon Alcarria
  • Tomás Robles
  • Edwin Cedeño
  • Erno Peter Cosma
  • Javier Bermejo
  • Francisco Perez Arribas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8276)

Abstract

Most of the current evacuation plans are based on static signaling, fixed monitoring infrastructure, and limited user notification and feedback mechanisms. These facts lead to lower situation awareness, in the case event of an emergency, such as blocked emergency exits, while delaying the reaction time of individuals. In this context, we introduce the E-Flow communication system, which improves the user awareness by integrating personal, mobile and fixed devices with the existing monitoring infrastructure. Our system broadens the notification and monitoring alternatives, in real time, among, safety staff, end-users and evacuation related devices, such as sensors and actuators.

Keywords

evacuation communication system publish/subscribe MQTT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hamza-Lup, G.L., Hua, K.A., Minh Le, P.R.: Dynamic Plan Generation and Real-Time Management Techniques for Traffic Evacuation. IEEE Transactions on Intelligent Transportation Systems 9(4), 615–624 (2008)CrossRefGoogle Scholar
  2. 2.
    Lovas, G.G.: On the importance of building evacuation system components. IEEE Transactions on Engineering Management 45(2), 181–191 (1998)CrossRefGoogle Scholar
  3. 3.
    Georgoudas, I.G., Sirakoulis, G.C., Andreadis, I.T.: A cellular automaton crowd tracking system for modelling evacuation processes. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 699–702. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Galea, E.R., Brown, R.C., Filippidis, L., Deere, S., Peacock, R.D., Kuligowski, E.D., Averill, J.D.: Pedestrian and Evacuation Dynamics. Springer, Boston (2011)Google Scholar
  5. 5.
    Avanza, Proyecto Tractor. E-Flow Project (2011), http://gisai.dit.upm.es/index.php/projects
  6. 6.
    MQTT Protocol Specificacion v3.1, http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html (accessed on June 2013)
  7. 7.
    Morales Dominguez, A., Robles, T., Alcarria, R., Cedeño, E.: A Rendezvous Mobile Broker for Pub/Sub Networks. In: Mauri, J.L., Rodrigues, J.J.P.C. (eds.) GreeNets 2012. LNICST, vol. 113, pp. 16–27. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    WS-Topics 1.3 OASIS Standard, http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf (accessed on June 2013)
  9. 9.
    Moquette MQTT Java, http://code.google.com/p/moquette-mqtt/ (accessed on June 2013)
  10. 10.
    Extensible Messaging and Presence Protocol (XMPP): Core. IETF RFC6120Google Scholar
  11. 11.
    Morales Dominguez, A., Alcarria, R., Cedeno, E., Robles, T.: An Extended Topic-Based Pub/Sub Broker for Cooperative Mobile Services. In: 27th International Conference Advanced Information Networking and Applications Workshops (WAINA), pp. 1313–1318 (2013)Google Scholar
  12. 12.
    OpenFire, http://www.igniterealtime.org/projects/openfire/ (accessed on June 2013)
  13. 13.
    Fusesource MQTT libraries, https://github.com/fusesource/mqtt-client (accessed on June 2013)
  14. 14.
    Node.js, http://nodejs.org/ (accessed on June 2013)
  15. 15.
    Filippoupolitis, A., Gorbil, G., Gelenbe, E.: Autonomous navigation systems for emergency management in buildings. In: GLOBECOM Workshops IEEE, pp. 1056–1061 (2011)Google Scholar
  16. 16.
    Cheng, N.: An Optimization Method for Dynamic Evacuation Route Programming Based on Improved Ant Colony Algorithm. In: International Conference on  Intelligent System Design and Engineering Application (ISDEA), pp. 265–267 (2010)Google Scholar
  17. 17.
    Sharma, S., Vadali, H.: Modeling Emergency Scenarios in Virtual Evacuation Environment. In: WRI World Congress on Computer Science and Information Engineering, vol. 4, pp. 759–763 (2009)Google Scholar
  18. 18.
    Jakob, N.: Usability Engineering. Academic Press (1993)Google Scholar
  19. 19.
    Almeida., J.E., Kokkinogenis., Z., Rossetti, R.J.F.: NetLogo implementation of an evacuation scenario. In: 7th Iberian Conference on Information Systems and Technologies, pp. 1–4 (2012)Google Scholar
  20. 20.
    Hamacher, H.W., Tjandra, S.A.: Mathematical Modeling of Evacuation Problems: A State of the Art. In: Schreckenberg, M., Sharma, S.D. (eds.) Pedestrian and Evacuation Dynamics, pp. 227–266. Springer, Berlin (2002)zbMATHGoogle Scholar
  21. 21.
    Luh, P.B., Wilkie, C.T., Chang, S.-C., Marsh, K.L., Olderman, N.: Modeling and Optimization of Building Emergency Evacuation Considering Blocking Effects on Crowd Movement. IEEE Transactions on Automation Science and Engineering 9(4), 687–700 (2012)CrossRefGoogle Scholar
  22. 22.
    Alljoyn Website, https://www.alljoyn.org/ (accessed on June 2013)
  23. 23.
    Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Texas Instrument OMAP-L137, http://www.ti.com/product/omap-l137 (Accessed on June 2013)
  25. 25.
    Cypress Semiconductor PSOC3, http://www.cypress.com/?id=2232 (Accessed on June 2013)

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Augusto Morales
    • 1
  • Ramon Alcarria
    • 1
  • Tomás Robles
    • 1
  • Edwin Cedeño
    • 1
  • Erno Peter Cosma
    • 1
  • Javier Bermejo
    • 1
  • Francisco Perez Arribas
    • 1
  1. 1.Technical University of MadridMadridSpain

Personalised recommendations