Advertisement

Magnetic-Field Feature Extraction for Indoor Location Estimation

  • Carlos Eric Galván-Tejada
  • Juan Pablo García-Vázquez
  • Ramón Brena
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8276)

Abstract

User indoor positioning has been under constant improvement especially with the availability of new sensors integrated into the modern mobile devices. These sensory devices allow us to exploit not only infrastructures made for every day use, such as Wi-Fi, but also natural infrastructure, as is the case of natural magnetic fields. From our experience working with mobile devices and Magnetic-Field based location systems, we identify some issues that should be addressed to improve the performance of a Magnetic-Field based system, such as a reduction of the data to be analyzed to estimate an individual location. In this paper we propose a feature extraction process that uses magnetic-field temporal and spectral features to acquire a classification model using the capabilities of mobile phones. Finally, we present a comparison against well known spectral classification algorithms with the aim to ensure the reliability of the feature extraction process.

Keywords

Magnetic Field Measurements Magnetometers Location Indoor Positioning Location Estimation Feature Extraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almaula, V., Cheng, D.: Bluetooth Triangulator. Technical report, Department of Computer Science and Engineering, University of California, San Diego (2006)Google Scholar
  2. 2.
    Altini, M., Brunelli, D., Farella, E., Benini, L.: Bluetooth indoor localization with multiple neural networks. In: 2010 5th IEEE International Symposium on Wireless Pervasive Computing (ISWPC), pp. 295–300 (2010)Google Scholar
  3. 3.
    Fernandez, T., Rodas, J., Escudero, C., Iglesia, D.: Bluetooth Sensor Network Positioning System with Dynamic Calibration. In: 4th International Symposium on Wireless Communication Systems (ISWCS 2007), pp. 45–49 (2007)Google Scholar
  4. 4.
    Galvn-Tejada, C.E., Carrasco-Jimenez, J.C., Brena, R.: Location Identification Using a Magnetic-field-based FFT Signature. Procedia Computer Science 19, 533–539 (2013)CrossRefGoogle Scholar
  5. 5.
    Storms, W., Shockley, J., Raquet, J.: Magnetic field navigation in an indoor environment. In: Ubiquitous Positioning Indoor Navigation and Location Based Service (UPINLBS), pp. 1–10 (October 2010)Google Scholar
  6. 6.
    Chung, J., Donahoe, M., Schmandt, C., Kim, I.J., Razavai, P., Wiseman, M.: Indoor location sensing using geo-magnetism. In: Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services (MobiSys 2011), pp. 141–154. ACM, New York (2011)Google Scholar
  7. 7.
    Li, B., Gallagher, T., Dempster, A., Rizos, C.: How feasible is the use of magnetic field alone for indoor positioning? In: 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–9 (2012)Google Scholar
  8. 8.
    Zhang, H., Martin, F.: Robotic mapping assisted by local magnetic field anomalies. In: 2011 IEEE Conference on Technologies for Practical Robot Applications (TePRA), pp. 25–30 (2011)Google Scholar
  9. 9.
    Bargh, M.S., de Groote, R.: Indoor localization based on response rate of bluetooth inquiries. In: Proceedings of the first ACM International Workshop on Mobile Entity Localization and Tracking in GPS-Less Environments (MELT 2008), pp. 49–54. ACM, New York (2008)CrossRefGoogle Scholar
  10. 10.
    Machaj, J., Brida, P., Tatarova, B.: Impact of the number of access points in indoor fingerprinting localization. In: 2010 20th International Conference on Radioelektronika (RADIOELEKTRONIKA), pp. 1–4 (2010)Google Scholar
  11. 11.
    Riehle, T., Anderson, S., Lichter, P., Condon, J., Sheikh, S., Hedin, D.: Indoor waypoint navigation via magnetic anomalies. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5315–5318 (2011)Google Scholar
  12. 12.
    Agostini, G., Longari, M., Pollastri, E.: Musical instrument timbres classification with spectral features. In: 2001 IEEE Fourth Workshop on Multimedia Signal Processing, pp. 97–102 (2001)Google Scholar
  13. 13.
    Eberhardt, F., Glymour, C., Scheines, R.: On the number of experiments sufficient and in the worst case necessary to identify all causal relations among n variables. arXiv preprint arXiv:1207.1389 (2012)Google Scholar
  14. 14.
    Bancroft, J., Lachapelle, G.: Use of magnetic quasi static field (QSF) updates for pedestrian navigation. In: 2012 IEEE/ION Position Location and Navigation Symposium (PLANS), pp. 605–612 (April 2012)Google Scholar
  15. 15.
    Tsai, W.H., Tu, Y.M., Ma, C.H.: An FFT-based fast melody comparison method for query-by-singing/humming systems. Pattern Recognition Letters 33(16), 2285–2291 (2012)CrossRefGoogle Scholar
  16. 16.
    Kulkarni, V., Sinha, P.: Pruning of Random Forest classifiers: A survey and future directions. In: 2012 International Conference on Data Science Engineering (ICDSE), pp. 64–68 (2012)Google Scholar
  17. 17.
    De Carvalho, O., Meneses, P.R.: Spectral correlation mapper (SCM): An improvement on the spectral angle mapper (SAM). In: 2000 Workshop Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), Pasadena (2000)Google Scholar
  18. 18.
    Kuching, S.: The performance of maximum likelihood, spectral angle mapper, neural network and decision tree classifiers in hyperspectral image analysis. Journal of Computer Science 3(6), 419–423 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Carlos Eric Galván-Tejada
    • 1
  • Juan Pablo García-Vázquez
    • 1
  • Ramón Brena
    • 1
  1. 1.Instituto Tecnológico y de Estudios Superiores de MonterreyAutonomous Agents in Ambient IntelligenceMonterreyMéxico

Personalised recommendations