Virtual Robotization of the Human Body via Data-Driven Vibrotactile Feedback

  • Yosuke Kurihara
  • Taku Hachisu
  • Katherine J. Kuchenbecker
  • Hiroyuki Kajimoto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8253)


Worlds of science fiction frequently involve robotic heroes composed of metallic parts. Although these characters exist only in the realm of fantasy, many of us would be interested in becoming them, or becoming like them. Therefore, we developed a virtual robotization system that provides a robot-like feeling to the human body not only by using a visual display and sound effects, but also by rendering a robot’s haptic vibration to the user’s arm. The vibrotactile stimulus was recorded using real robot actuation and modeled using linear predictive coding (LPC). We experimentally confirmed that the subjective robot-like feeling was significantly increased by combining the robot-vibration feedback with a robot-joint animation and creaking sound effects.


Body Sense Material Robotization Vibrotactile Feedback 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    TN Games, FPS Gaming Vest, (last access: August 18, 2013)
  2. 2.
    Ooshima, S., Hashimoto, Y., Ando, H., Watanabe, J., Kajimoto, H.: Simultaneous Presentation of Tactile and Auditory Motion to the Abdomen to Present the Feeling of Being Slashed. In: Proceedings of the SICE Annual Conference, pp. 467–471 (2008)Google Scholar
  3. 3.
    McMahan, W., Kuchenbecker, K.J.: Spectral subtraction of robot motion noise for improved event detection in tactile acceleration signals. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012, Part I. LNCS, vol. 7282, pp. 326–337. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Ince, G., Nakadai, K., Rodemann, T., Hasegawa, Y., Tsujino, H., Imura, J.I.: Ego noise suppression of a robot using template subtraction. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 199–204 (2009)Google Scholar
  5. 5.
    Visell, Y., Law, A., Cooperstock, J.R.: Touch is everywhere: Floor surfaces as ambient haptic interfaces. IEEE Transactions on Haptics 2, 148–159 (2009)CrossRefGoogle Scholar
  6. 6.
    Cirio, G., Marchal, M., L’ecuyer, A., Cooperstock, J.R.: Vibrotactile rendering of splashing fluids. IEEE Transactions on Haptics 6, 117–122 (2012)CrossRefGoogle Scholar
  7. 7.
    Okamura, A.M., Cutkosky, M.R., Dennerlein, J.T.: Reality-based models for vibration feedback in virtual environments. IEEE/ASME Transactions on Mechatronics 6, 245–252 (2001)CrossRefGoogle Scholar
  8. 8.
    Hachisu, T., Sato, M., Fukushima, S., Kajimoto, H.: Augmentation of material property by modulating vibration resulting from tapping. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012, Part I. LNCS, vol. 7282, pp. 173–180. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Romano, J.M., Kuchenbecker, K.J.: Creating realistic virtual textures from contact acceleration data. IEEE Transactions on Haptics 5, 109–119 (2012)CrossRefGoogle Scholar
  10. 10.
    Takeuchi, Y., Kamuro, S., Minamizawa, K., Tachi, S.: Haptic Duplicator. In: Proceedings of the Virtual Reality International Conference, pp. 30:1–30:2 (2012)Google Scholar
  11. 11.
    Minamizawa, K., Kakehi, Y., Nakatani, M., Mihara, S., Tachi, S.: TECHTILE Toolkit: A prototyping tool for designing haptic media. In: Proceedings of the ACM SIGGRAPH 2012 Emerging Technologies, p. 22 (2012)Google Scholar
  12. 12.
    Kurihara, Y., Hachisu, T., Sato, M., Fukushima, S., Kajimoto, H.: Virtual alteration of body material by periodic vibrotactile feedback. In: Proceedings of the IEEE Virtual Reality Conference (2013)Google Scholar
  13. 13.
    Wellman, P., Howe, R.D.: Towards realistic vibrotactile display in virtual environments. In: Proceedings of the ASME Dynamic Systems and Control Division, vol. 57, pp. 713–718 (1995)Google Scholar
  14. 14.
    Goodwin, G.M., McCloskey, D.I., Matthews, P.B.C.: The contribution of muscle afferents to kinaesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain 95, 705–748 (1972)CrossRefGoogle Scholar
  15. 15.
    Burke, D., Hagbarth, K.E., Löfstedt, L., Wallin, G.: The responses of human muscle spindle endings to vibration of non-contracting muscles. J. Physiol. (Lond.) 261, 673–693 (1976)CrossRefGoogle Scholar
  16. 16.
    Naito, E.: Sensing limb movements in the motor cortex: How humans sense limb movement. Neuroscientist 10, 73–82 (2004)CrossRefGoogle Scholar
  17. 17.
    Lackner, J.R.: Some proprioceptive influences on the perceptual representation of body shape and orientation. Brain 111, 281–297 (1988)CrossRefGoogle Scholar
  18. 18.
    Botvinick, M., Cohen, J.: Rubber hands “feel” touch that eyes see. Nature 391, 756 (1998)CrossRefGoogle Scholar
  19. 19.
    Tsakiris, M.: My body in the brain: A neurocognitive model of body-ownership. Neuropsychologica 48, 703–712 (2010)CrossRefGoogle Scholar
  20. 20.
    Slater, M., Perez-Marcos, D., Ehrsson, H.H., Sanchez-Vives, M.V.: Inducing illusory ownership of virtual body. Frontiers in Neuroscience 3, 214–220 (2009)CrossRefGoogle Scholar
  21. 21.
    Okamura, A.M., Webster, R.J., Nolin, J., Johnson, K.W., Jafry, H.: The haptic scissors: Cutting in virtual environments. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 828–833 (2003)Google Scholar
  22. 22.
    Romano, J.M., Yoshioka, T., Kuchenbecker, K.J.: Automatic filter design for synthesis of haptic textures from recorded acceleration data. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 1815–1821 (2010)Google Scholar
  23. 23.
    Dabrowski, J.R., Munsone, V.: Is 100 milliseconds too fast? In: Proceedings of the ACM Human Factors in Computing Systems (CHI), pp. 317–318 (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Yosuke Kurihara
    • 1
    • 2
  • Taku Hachisu
    • 1
    • 3
  • Katherine J. Kuchenbecker
    • 2
  • Hiroyuki Kajimoto
    • 1
    • 4
  1. 1.The University of Electro-CommunicationsTokyoJapan
  2. 2.University of PennsylvaniaPhiladelphiaUSA
  3. 3.JSPS Research FellowJapan
  4. 4.Japan Science and Technology AgencyJapan

Personalised recommendations