Distributed Optimal Control in One Non-Self-Adjoint Boundary Value Problem

  • V. O. KapustyanEmail author
  • O. A. Kapustian
  • O. K. Mazur
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 211)


We prove the solvability of the optimal control problem for elliptic equation with nonlocal boundary conditions in a circular sector with terminal quadratic cost functional in the class of distributed controls.


  1. 1.
    Lions, J.-L.: Optimal Problem in PDE Systems. Mir, Moscow (1972)Google Scholar
  2. 2.
    Egorov, A.I.: Optimal Control in Heat and Diffusion Processes. Nauka, Moscow (1978)Google Scholar
  3. 3.
    Belozerov, V.E., Kapustyan, V.E.: Geometrical Methods of Modal Control. Naukova Dumka, Kyiv (1999)Google Scholar
  4. 4.
    Kapustyan, V.E.: Optimal stabilization of the solutions of a parabolic boundary-value problem using bounded lumped control. J. Autom. Inf. Sci. 31(12), 45–52 (1999)Google Scholar
  5. 5.
    Kapustyan, E.A., Nakonechny, A.G.: Optimal bounded control synthesis for a parabolic boundary-value problem with fast oscillatory coefficients. J. Autom. Inf. Sci. 31(12), 33–44 (1999)Google Scholar
  6. 6.
    Moiseev, E.I., Ambarzumyan, V.E.: About resolvability of non-local boundary-value problem with equality of fluxes. Differ. Equ. 46(5), 718–725 (2010)Google Scholar
  7. 7.
    Ionkin, N.I.: Solution of boundary-value problem from heat theory with non-classical boundary conditions. Differ. Equ. 13(2), 294–304 (1977)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • V. O. Kapustyan
    • 1
    Email author
  • O. A. Kapustian
    • 2
  • O. K. Mazur
    • 1
  1. 1.National Technical University of Ukraine “Kyiv Polytechnic Institute”KyivUkraine
  2. 2.Taras Shevchenko National University of KyivKyivUkraine

Personalised recommendations