Space Complexity of Self-Stabilizing Leader Election in Population Protocol Based on k-Interaction

  • Xiaoguang Xu
  • Yukiko Yamauchi
  • Shuji Kijima
  • Masafumi Yamashita
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8255)

Abstract

Population protocol (PP) is a distributed computing model for passively mobile systems, in which a computation is executed by interactions between two agents. This paper is concerned with an extended model, population protocol based on interactions of at most k agents (PPk). Beauquier et al. (2012) recently introduced the model, and showed a hierarchy of computational powers of PPk with respect to k; a PPk + 1 is strictly more powerful than a PPk. Motivated by a further understanding of the model, this paper investigates the space complexity of PPk for self-stabilizing leader election (SS-LE), which is a fundamental problem for a distributed system. Cai et al. (2012) showed that the space complexity of SS-LE for n agents by a PP (i.e., PP2) is exactly n. This paper shows that the space complexity of SS-LE for n agents by a PPk is exactly ⌈(n − 1)/(k − 1)⌉ + 1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Peralta, R.: Stably computable properties of network graphs. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 63–74. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distributed Computing 18, 235–253 (2006)CrossRefMATHGoogle Scholar
  3. 3.
    Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols with a leader. Distributed Computing 21, 183–199 (2008)CrossRefMATHGoogle Scholar
  4. 4.
    Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population protocols. ACM Transactions on Autonomous and Adaptive Systems 3, Article 13 (2008)Google Scholar
  5. 5.
    Aspnes, J., Ruppert, E.: An introduction to population protocols. Bulletin of the EATCS 93, 98–117 (2007)MathSciNetMATHGoogle Scholar
  6. 6.
    Beauquier, J., Burman, J., Rosaz, L., Rozoy, B.: Non-deterministic population protocols. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 61–75. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Beauquier, J., Clement, J., Messika, S., Rosaz, L., Rozoy, B.: Self-stabilizing counting in mobile sensor networks. In: Proc. of PODC 2007, pp. 396–397 (2007)Google Scholar
  8. 8.
    Cai, S., Izumi, T., Wada, K.: How to prove impossibility under global fairness: on space complexity of self-stabilizing leader election on a population protocol model. Theory of Computing Systems 50, 433–445 (2012)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Canepa, D., Potop-Butucaru, M.G.: Stabilizing leader election in population protocols. INRIA Rocquencourt, RR-6269 (2007), http://hal.inria.fr/inria-00166632/en/
  10. 10.
    Chatzigiannakis, I., Michail, O., Spirakis, P.G.: Mediated population protocols. Theoretical Computer Science 412, 2434–2450 (2011)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chatzigiannakis, I., Michail, O., Spirakis, P.G.: Recent advances in population protocols. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 56–76. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Devismes, S., Tixeuil, S., Yamashita, M.: Weak vs. self vs. probabilistic stabilization. In: Proc. of ICDCS 2008, pp. 681–688 (2008)Google Scholar
  13. 13.
    Dijkstra, E.W.: Self stabilizing systems in spite of distributed control. Communications of the Association of the Computing Machinery 17, 643–644 (1974)CrossRefMATHGoogle Scholar
  14. 14.
    Fischer, M., Jiang, H.: Self-stabilizing leader election in networks of finite-state anonymous agents. In: Shvartsman, A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 395–409. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Guerraoui, R., Ruppert, E.: Names trump malice: Tiny mobile agents can tolerate byzantine failures. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 484–495. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Mediated population protocols. Theoretical Computer Science 412, 2434–2450 (2011)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Mizoguchi, R., Ono, H., Kijima, S., Yamashita, M.: On space complexity of self-stabilizing leader election in mediated population protocol. Distributed Computing 25, 451–460 (2012)CrossRefMATHGoogle Scholar
  18. 18.
    Schrijver, A.: Combinatorial Optimization. Springer (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Xiaoguang Xu
    • 1
  • Yukiko Yamauchi
    • 1
  • Shuji Kijima
    • 1
  • Masafumi Yamashita
    • 1
  1. 1.Graduate School of Information Science and Electrical EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations