Certified Impossibility Results for Byzantine-Tolerant Mobile Robots

  • Cédric Auger
  • Zohir Bouzid
  • Pierre Courtieu
  • Sébastien Tixeuil
  • Xavier Urbain
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8255)


We propose a framework to build formal developments for robot networks using the Coq proof assistant, to state and prove formally various properties. We focus in this paper on impossibility proofs, as it is natural to take advantage of the Coq higher order calculus to reason about algorithms as abstract objects. We present in particular formal proofs of two impossibility results for convergence of oblivious mobile robots if respectively more than one half and more than one third of the robots exhibit Byzantine failures, starting from the original theorems by Bouzid et al.. Thanks to our formalisation, the corresponding Coq developments are quite compact. To our knowledge, these are the first certified (in the sense of formally proved) impossibility results for robot networks.


Mobile Robot Impossibility Result Proof Assistant Mobile Entity Robot Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM Journal on Computing 36(1), 56–82 (2006)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Almeida, J.B., Barbosa, M., Bangerter, E., Barthe, G., Krenn, S., Béguelin, S.Z.: Full Proof Cryptography: Verifiable Compilation of Efficient Zero-Knowledge Protocols. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM Conference on Computer and Communications Security, pp. 488–500. ACM (2012)Google Scholar
  3. 3.
    Berard, B., Millet, L., Potop-Butucaru, M., Thierry-Mieg, Y., Tixeuil, S.: Formal verification of Mobile Robot Protocols. Technical report (May 2013)Google Scholar
  4. 4.
    Bezem, M., Bol, R., Groote, J.F.: Formalizing Process Algebraic Verifications in the Calculus of Constructions. Formal Aspects of Computing 9, 1–48 (1997)CrossRefMATHGoogle Scholar
  5. 5.
    Bonnet, F., Défago, X., Petit, F., Potop-Butucaru, M.G., Tixeuil, S.: Brief Announcement: Discovering and Assessing Fine-Grained Metrics in Robot Networks Protocols. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol. 7596, pp. 282–284. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Bouzid, Z., Potop-Butucaru, M.G., Tixeuil, S.: Optimal Byzantine-Resilient Convergence in Uni-Dimensional Robot Networks. Theoretical Computer Science 411(34-36), 3154–3168 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cadilhac, M., Hérault, T., Lassaigne, R., Peyronnet, S., Tixeuil, S.: Evaluating complex MAC protocols for sensor networks with APMC. Electronic Notes in Theoretical Computer Science 185, 33–46 (2007)CrossRefGoogle Scholar
  8. 8.
    Cansell, D., Méry, D.: The Event-B Modelling Method: Concepts and Case Studies. In: Logics of Specification Languages, pp. 47–152. Springer (2007)Google Scholar
  9. 9.
    Castéran, P., Filou, V., Mosbah, M.: Certifying Distributed Algorithms by Embedding Local Computation Systems in the Coq Proof Assistant. In: Bouhoula, A., Ida, T. (eds.) Symbolic Computation in Software Science, SCSS 2009 (2009)Google Scholar
  10. 10.
    Chou, C.-T.: Mechanical Verification of Distributed Algorithms in Higher-Order Logic. The Computer Journal 38, 158–176 (1995)CrossRefGoogle Scholar
  11. 11.
    Clément, J., Delporte-Gallet, C., Fauconnier, H., Sighireanu, M.: Guidelines for the verification of population protocols. In: ICDCS, Minneapolis, Minnesota, USA, pp. 215–224. IEEE Computer Society (June 2011)Google Scholar
  12. 12.
    Coquand, T., Paulin-Mohring, C.: Inductively Defined Types. In: Martin-Löf, P., Mints, G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 50–66. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  13. 13.
    Cousineau, D., Doligez, D., Lamport, L., Merz, S., Ricketts, D., Vanzetto, H.: TLA + Proofs. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 147–154. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Deng, Y., Monin, J.-F.: Verifying Self-stabilizing Population Protocols with Coq. In: Chin, W.-N., Qin, S. (eds.) Third IEEE International Symposium on Theoretical Aspects of Software Engineering (TASE 2009), Tianjin, China, pp. 201–208. IEEE Computer Society (July 2009)Google Scholar
  15. 15.
    Devismes, S., Lamani, A., Petit, F., Raymond, P., Tixeuil, S.: Optimal Grid Exploration by Asynchronous Oblivious Robots. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol. 7596, pp. 64–76. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Dubois, S., Tixeuil, S.: A Taxonomy of Daemons in Self-stabilization. Technical Report 1110.0334, ArXiv eprint (October 2011)Google Scholar
  17. 17.
    Fellahi, N., Bonakdarpour, B., Tixeuil, S.: Rigorous performance evaluation of self-stabilization using probabilistic model checking. In: Proceedings of the International Conference on Reliable Distributed Systems (SRDS 2013), Braga, Portugal. IEEE Computer Society (September 2013)Google Scholar
  18. 18.
    Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of Distributed Consensus with One Faulty Process. J. ACM 32(2), 374–382 (1985)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers (2012)Google Scholar
  20. 20.
    Fokkink, W.: Modelling Distributed Systems. EATCS Texts in Theoretical Computer Science. Springer (2007)Google Scholar
  21. 21.
    Gonthier, G.: Formal–Proof The Four-Color Theorem. Notices of the AMS 55, 1370 (2008)MathSciNetGoogle Scholar
  22. 22.
    Gonthier, G.: Engineering Mathematics: the Odd Order Theorem Proof. In: Giacobazzi, R., Cousot, R. (eds.) POPL, pp. 1–2. ACM (2013)Google Scholar
  23. 23.
    Küfner, P., Nestmann, U., Rickmann, C.: Formal Verification of Distributed Algorithms. In: Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp. 209–224. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Lamport, L.: Byzantizing Paxos by Refinement. In: Peleg, D. (ed.) DISC 2001. LNCS, vol. 6950, pp. 211–224. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Lamport, L., Shostak, R., Pease, M.: The Byzantine Generals Problem. ACM Transactions on Programming Languages and Systems 4(3), 382–401 (1982)CrossRefMATHGoogle Scholar
  26. 26.
    Leroy, X.: A Formally Verified Compiler Back-End. Journal of Automated Reasoning 43(4), 363–446 (2009)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Litovsky, I., Métivier, Y., Sopena, É.: Graph Relabelling Systems and Distributed Algorithms. In: Ehrig, H., Kreowski, H.-J., Montanari, U., Rozenberg, G. (eds.) Handbook of Graph Grammars and Computing by Graph Transformation, vol. 3, pp. 1–56. World Scientific (1999)Google Scholar
  28. 28.
    Mccarthy, J., Painter, J.: Correctness of a Compiler for Arithmetic Expressions. In: Proceedings of Applied Mathematica. Mathematical Aspects of Computer Science, vol. 19, pp. 33–41. American Mathematical Society (1967)Google Scholar
  29. 29.
    Pease, M.C., Shostak, R.E., Lamport, L.: Reaching Agreement in the Presence of Faults. J. ACM 27(2), 228–234 (1980)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Suzuki, I., Yamashita, M.: Distributed Anonymous Mobile Robots: Formation of Geometric Patterns. SIAM Journal of Computing 28(4), 1347–1363 (1999)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Théry, L., Hanrot, G.: Primality Proving with Elliptic Curves. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 319–333. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Cédric Auger
    • 1
  • Zohir Bouzid
    • 4
  • Pierre Courtieu
    • 2
  • Sébastien Tixeuil
    • 4
    • 5
  • Xavier Urbain
    • 1
    • 3
  1. 1.École Nat. Sup. d’Informatique pour l’Industrie et l’Entreprise (ENSIIE)EvryFrance
  2. 2.CÉDRIC – Conservatoire national des arts et métiersParisFrance
  3. 3.LRI, CNRS UMR 8623Université Paris-SudOrsayFrance
  4. 4.UPMC Sorbonne UniversitésFrance
  5. 5.Institut Universitaire de FranceFrance

Personalised recommendations