Advertisement

Synthesizing, Correcting and Improving Code, Using Model Checking-Based Genetic Programming

  • Gal Katz
  • Doron Peled
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8244)

Abstract

The use of genetic programming, in combination of model checking and testing, provides a powerful way to synthesize programs. Whereas classical algorithmic synthesis provides alarming high complexity and undecidability results, the genetic approach provides a surprisingly successful heuristics. We describe several versions of a method for synthesizing sequential and concurrent systems. To cope with the constraints of model checking and of theorem proving, we combine such exhaustive verification methods with testing. We show several examples where we used our approach to synthesize, improve and correct code.

Keywords

Model Check Genetic Programming Candidate Solution Critical Section Mutual Exclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent systems. Inf. Process. Lett. 22(6), 307–309 (1986)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming – An Introduction. In: On the Automatic Evolution of Computer Programs and its Applications, 3rd edn. Morgan Kaufmann, dpunkt.verlag (2001)Google Scholar
  3. 3.
    Bar-David, Y., Taubenfeld, G.: Automatic discovery of mutual exclusion algorithms. In: PODC, p. 305 (2003)Google Scholar
  4. 4.
    Dijkstra, E.W.: Solution of a problem in concurrent programming control. Commun. ACM 8(9), 569 (1965)CrossRefGoogle Scholar
  5. 5.
    Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: POPL, pp. 85–94 (1995)Google Scholar
  6. 6.
    Fearnley, J., Peled, D., Schewe, S.: Synthesis of succinct systems. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 208–222. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–580 (1969)CrossRefzbMATHGoogle Scholar
  8. 8.
    Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge (1992)Google Scholar
  9. 9.
    Katz, G., Peled, D.: Genetic programming and model checking: Synthesizing new mutual exclusion algorithms. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. Katz, G., Peled, D, vol. 5311, pp. 33–47. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Katz, G., Peled, D.: Model checking-based genetic programming with an application to mutual exclusion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 141–156. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Katz, G., Peled, D.: Synthesizing solutions to the leader election problem using model checking and genetic programming. In: Namjoshi, K., Zeller, A., Ziv, A. (eds.) HVC 2009. LNCS, vol. 6405, pp. 117–132. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Katz, G., Peled, D.: Code mutation in verification and automatic code correction. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 435–450. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Katz, G., Peled, D.: MCGP: A software synthesis tool based on model checking and genetic programming. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 359–364. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Kessels, J.L.W.: Arbitration without common modifiable variables. Acta Inf. 17, 135–141 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  16. 16.
    Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods in System Design 19(3), 291–314 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Manna, Z., Wolper, P.: Synthesis of communicating processes from temporal logic specifications. ACM Trans. Program. Lang. Syst. 6(1), 68–93 (1984)CrossRefzbMATHGoogle Scholar
  18. 18.
    Montana, D.J.: Strongly typed genetic programming. Evolutionary Computation 3(2), 199–230 (1995)CrossRefGoogle Scholar
  19. 19.
    Niebert, P., Peled, D., Pnueli, A.: Discriminative model checking. In: Gupta, A., Malik, S. (eds.) CAV 2008. Niebert, P., Peled, D., Pnueli, A, vol. 5123, pp. 504–516. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Peled, D.: Software Reliability Methods. Springer (2001)Google Scholar
  21. 21.
    Perez, J.A., Corchuelo, R., Toro, M.: An order-based algorithm for implementing multiparty synchronization. Concurrency - Practice and Experience 16(12), 1173–1206 (2004)CrossRefGoogle Scholar
  22. 22.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–190 (1989)Google Scholar
  23. 23.
    Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In: FOCS, pp. 746–757 (1990)Google Scholar
  24. 24.
    Schwefel, H.-P.P.: Evolution and Optimum Seeking: The Sixth Generation. John Wiley & Sons, Inc., New York (1993)Google Scholar
  25. 25.
    Tsay, Y.-K.: Deriving a scalable algorithm for mutual exclusion. In: Kutten, S. (ed.) DISC 1998. LNCS, vol. 1499, pp. 393–407. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Gal Katz
    • 1
  • Doron Peled
    • 1
  1. 1.Department of Computer ScienceBar Ilan UniversityRamat GanIsrael

Personalised recommendations