On Rendezvous in Mobile Sensing Networks

  • Olga SaukhEmail author
  • David Hasenfratz
  • Christoph Walser
  • Lothar Thiele
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 281)


A rendezvous is a temporal and spatial vicinity of two sensors. In this chapter, we investigate rendezvous in the context of mobile sensing systems. We use an air quality dataset obtained with the OpenSense monitoring network to explore rendezvous properties for carbon monoxide, ozone, temperature, and humidity processes. Temporal and spatial locality of a physical process impacts the number of rendezvous between sensors, their duration, and their frequency. We introduce a rendezvous connection graph and explore the trade-off between locality of a process and the amount of time needed for the graph to be connected. Rendezvous graph connectivity has many potential use cases, such as sensor fault detection. We successfully apply the proposed concepts to track down faulty sensors and to improve sensor calibration in our deployment.


Sensor Node Sensor Reading Mobile Sensor Mobile Sink Sensor Calibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Tonio Gsell and Jan Beutel for their technical support. Further, we thank Roman Lim, Federico Ferrari, and the anonymous reviewers for their valuable feedback that helped us to improve this chapter. This work was funded by with Swiss Confederation financing.


  1. 1.
    Beutel, J., Gruber, S., Hasler, A., Lim, R., Meier, A., Plessl, C., Talzi, I., Thiele, L., Tschudin, C., Woehrle, M., et al.: PermaDAQ: A scientific instrument for precision sensing and data recovery in environmental extremes. ACM/IEEE IPSN, In (2009)Google Scholar
  2. 2.
    Ceriotti, M., Mottola, L., Picco, G.P., Murphy, A.L., Guna, S., Corra, M., Pozzi, M., Zonta, D., Zanon, P.: Monitoring heritage buildings with wireless sensor networks: The Torre Aquila deployment. ACM/IEEE IPSN, In (2009)Google Scholar
  3. 3.
    Yim, S., Choi, Y.: Neighbor-based malicious node detection in wireless sensor networks. Wireless Sensor Network 4(9), 219–225 (2012)CrossRefGoogle Scholar
  4. 4.
    Farruggia, A., Re, G.L., Ortolani, M.: Detecting faulty wireless sensor nodes through stochastic classification. In: PerCom Workshops, IEEE. (2011) 148–153.Google Scholar
  5. 5.
    Miluzzo, E., Lane, N.D., Campbell, A.T., Olfati-Saber, R.: CaliBree: A self-calibration system for mobile sensor networks. IEEE DCOSS, In (2008)Google Scholar
  6. 6.
    Hasenfratz, D., Saukh, O., Thiele, L.: On-the-fly calibration of low-cost gas sensors. Springer EWSN, In (2012)Google Scholar
  7. 7.
    Rajasegarar, S., Leckie, C., Palaniswami, M.: Anomaly detection in wireless sensor networks. Wireless Communications, IEEE 15(4), 34–40 (2008)CrossRefGoogle Scholar
  8. 8.
    Hoek, G., Beelen, R., de Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P., Briggs, D.: A review of land-use regression models to assess spatial variation of outdoor air pollution. Elsevier Atmospheric Environment, In (2008)Google Scholar
  9. 9.
    Elnahrawy, E., Nath, B.: Cleaning and querying noisy sensors. ACM WSNA, In (2003)Google Scholar
  10. 10.
    Hasenfratz, D., Saukh, O., Thiele, L.: Model-driven accuracy bounds for noisy sensor readings. IEEE DCOSS, In (2013)Google Scholar
  11. 11.
    Aberer, K., Sathe, S., Chakraborty, D., Martinoli, A., Barrenetxea, G., Faltings, B., Thiele, L.: OpenSense: Open community driven sensing of environment. ACM IWGS, In (2010)Google Scholar
  12. 12.
    Shi, K.: Semi-probabilistic routing in intermittently connected mobile ad hoc networks. Journal of Information Science and Engineering 26(5), 1677–1693 (2010)Google Scholar
  13. 13.
    Xing, G., Wang, T., Xie, Z., Jia, W.: Rendezvous planning in wireless sensor networks with mobile elements. IEEE Transactions on Mobile Computing 7(12), 1430–1443 (2008)CrossRefGoogle Scholar
  14. 14.
    Park, J., Moon, K., Yoo, S., Lee, S.: Optimal stop points for data gathering in sensor networks with mobile sinks. Wireless Sensor Network 4(1), 8–17 (2012)CrossRefGoogle Scholar
  15. 15.
    Du, J., Liu, H., Shangguan, L., Mai, L., Wang, K., Li, S.: Rendezvous data collection using a mobile element in heterogeneous sensor networks. International Journal of Distributed Sensor Networks 12, 1–12 (2012)CrossRefGoogle Scholar
  16. 16.
    Choi, B.J., Liang, H., Shen, X.S., Zhuang, W.: DCS: distributed asynchronous clock synchronization in delay tolerant networks. IEEE Transactions on Parallel and Distributed Systems 23(3), 491–504 (2012)CrossRefGoogle Scholar
  17. 17.
    Cao, Q., Abdelzaher, T., He, T., Stankovic, J.: Towards optimal sleep scheduling in sensor networks for rare-event detection. ACM/IEEE IPSN, In (2005)Google Scholar
  18. 18.
    Li, J.J., Faltings, B., Saukh, O., Hasenfratz, D., Beutel, J.: Sensing the air we breathe-the OpenSense Zurich dataset. AAAI, In (2012)Google Scholar
  19. 19.
    Lee, C.H., Kwak, J., Eun, D.Y.: Characterizing link connectivity for opportunistic mobile networking: Does mobility suffice? In: INFOCOM. (2013) 2124–2132.Google Scholar
  20. 20.
    Schmid, S., Wattenhofer, R.: Algorithmic models for sensor networks. WPDRTS, In (2006)Google Scholar
  21. 21.
    Abrams, Z., Goel, A., Plotkin, S.: Set k-cover algorithms for energy efficient monitoring in wireless sensor networks. In: ACM/IEEE IPSN. (2004) 424–432.Google Scholar
  22. 22.
    Gui, C., Mohapatra, P.: Power conservation and quality of surveillance in target tracking sensor networks. In: ACM MobiCom. (2004) 129–143.Google Scholar
  23. 23.
    Hsin, C.f., Liu, M.: Network coverage using low duty-cycled sensors: random & coordinated sleep algorithms. In: ACM/IEEE IPSN. (2004) 433–442.Google Scholar
  24. 24.
    Kumar, S., Lai, T.H., Balogh, J.: On k-coverage in a mostly sleeping sensor network. In: ACM MobiCom. (2004) 144–158.Google Scholar
  25. 25.
    Cevher, V., McClellan, J.H.: Sensor array calibration via tracking with the extended kalman filter. In: ICASSP, IEEE Computer Society (2001) 2817–2820.Google Scholar
  26. 26.
    Girod, L., Lukac, M., Trifa, V., Estrin, D.: The design and implementation of a self-calibrating distributed acoustic sensing platform. In: ACM SenSys. (2006) 71–84.Google Scholar
  27. 27.
    Koushanfar, F., Univ, R., Taft, N., Potkonjak, M.: Sleeping coordination for comprehensive sensing using isotonic regression and domatic partitions. In: INFOCOM. (2006) 1–13.Google Scholar
  28. 28.
    Keally, M., Zhou, G., Xing, G., Wu, J.: Exploiting sensing diversity for confident sensing in wireless sensor networks. In: INFOCOM. (2011) 1719–1727.Google Scholar
  29. 29.
    Hwang, J., He, T., Kim, Y.: Exploring in-situ sensing irregularity in wireless sensor networks. In: ACM SenSys. (2007) 289–303.Google Scholar
  30. 30.
    SGX Sensortech: MiCS-OZ-47 ozone sensor.
  31. 31.
    Alphasense: CO-AF sensor on a digital transmitter board.
  32. 32.
    Sensirion: SHT10 humidity and temperature sensor.
  33. 33.
    Aberer, K., Hauswirth, M., Salehi, A.: A middleware for fast and flexible sensor network deployment. VLDB, In (2006)Google Scholar
  34. 34.
    Vucetic, S., Fiez, T., Obradovic, Z.: Examination of the influence of data aggregation and sampling density on spatial estimation. Water Resources Research 36(12), 3721–3730 (2000)CrossRefGoogle Scholar
  35. 35.
    Björck, A.: Numerical methods for least squares problems. SIAM, In (1996)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Olga Saukh
    • 1
    Email author
  • David Hasenfratz
    • 1
  • Christoph Walser
    • 1
  • Lothar Thiele
    • 1
  1. 1.Computer Engineering and Networks Laboratory, ETH ZurichZurichSwitzerland

Personalised recommendations