The Dilemma of Conformational Dynamics in Enzyme Catalysis: Perspectives from Theory and Experiment

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 805)

Abstract

The role of protein dynamics in catalysis is a contemporary issue that has stirred intense debate in the field. This chapter provides a brief overview of the approaches and findings of a wide range of experimental, computational and theoretical studies that have addressed this issue. We summarize the results of our recent atomistic molecular dynamic studies on cis-trans isomerase. Our results help to reconcile the disparate perspectives regarding the complex role of enzyme dynamics in the catalytic step and emphasize the major contribution of transition state stabilization in rate enhancement.

Keywords

Enzyme dynamics Accelerated Molecular dynamics Catalysis Molecular mechanics Kramers’ rate theory Conformational dynamics Cis-trans isomerization/isomerase Cyclophilin A Principal component analysis NMR relaxation dispersion Protein flexibility Structure-function Dynamics-function Multi-exponential Kinetics Free energy barrier 

Notes

Acknowledgments

We acknowledge support from the National Science Foundation Grant MCB- 0953061, the Georgia Research Alliance and Georgia State University.

References

  1. 1.
    Fersht AR (1999) Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. W.H. Freeman and Company, New YorkGoogle Scholar
  2. 2.
    Wolfenden R, Snider MJ (2001) The depth of chemical time and the power of enzymes as catalysts. Acc Chem Res 34:938–945PubMedCrossRefGoogle Scholar
  3. 3.
    Demirijan DC, Shah PC, Morris-Varas F (1999) Screening for novel enzymes. In: Fessner W-D, Archelas A et al (eds) Topics in current chemistry: biocatalysis – from discovery to application. Springer, Berlin/HeidelbergGoogle Scholar
  4. 4.
    Fersht AR, Winter GP (2008) Redesigning enzymes by site-directed mutagenesis. In: Porter R, Clark S (eds) Ciba foundation symposium 111 – enzymes in organic synthesis. Wiley, ChichesterGoogle Scholar
  5. 5.
    Pauling L (1946) Molecular architecture and biological reactions. Chem Eng News Arch 24:1375–1377CrossRefGoogle Scholar
  6. 6.
    Warshel A (1978) Energetics of enzyme catalysis. Proc Natl Acad Sci USA 75:5250–5254PubMedCrossRefGoogle Scholar
  7. 7.
    Kamerlin SC, Warshel A (2010) At the dawn of the 21st century: is dynamics the missing link for understanding enzyme catalysis? Proteins 78:1339–1375PubMedCentralPubMedGoogle Scholar
  8. 8.
    Benkovic SJ, Hammes-Schiffer S (2003) A perspective on enzyme catalysis. Science 301:1196–1202PubMedCrossRefGoogle Scholar
  9. 9.
    Lemieux RU, Spohr U (1994) How Emil Fischer was led to the lock and key concept for enzyme specificity. Adv Carbohydr Chem Biochem 50:1–20PubMedGoogle Scholar
  10. 10.
    Koshland DE Jr (1959) Enzyme flexibility and enzyme action. J Cell Comp Physiol 54:245–258PubMedCrossRefGoogle Scholar
  11. 11.
    Koshland DE Jr (1960) The active site and enzyme action. Adv Enzymol Relat Subj Biochem 22:45–97PubMedGoogle Scholar
  12. 12.
    Wuthrich K (1995) NMR in structural biology: a collection of papers by Kurt Wüthrich. World Scientific Publishing Co. Pte. Ltd, SingaporeGoogle Scholar
  13. 13.
    Blake CC, Koenig DF, Mair GA et al (1965) Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Angstrom resolution. Nature 206:757–761PubMedCrossRefGoogle Scholar
  14. 14.
    Johnson LN, Phillips DC (1965) Structure of some crystalline lysozyme-inhibitor complexes determined by X-ray analysis at 6 Angstrom resolution. Nature 206:761–763PubMedCrossRefGoogle Scholar
  15. 15.
    Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118PubMedCrossRefGoogle Scholar
  16. 16.
    Ma B, Nussinov R (2010) Enzyme dynamics point to stepwise conformational selection in catalysis. Curr Opin Chem Biol 14:652–659PubMedCrossRefGoogle Scholar
  17. 17.
    McCammon JA, Harvey SC (1987) Dynamics of proteins and nucleic acids. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  18. 18.
    Henzler-Wildman KA, Lei M, Thai V et al (2007) A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450:913–916PubMedCrossRefGoogle Scholar
  19. 19.
    McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267:585–590PubMedCrossRefGoogle Scholar
  20. 20.
    Hammes-Schiffer S, Benkovic SJ (2006) Relating protein motion to catalysis. Annu Rev Biochem 75:519–541PubMedCrossRefGoogle Scholar
  21. 21.
    Masgrau L, Roujeinikova A, Johannissen LO et al (2006) Atomic description of an enzyme reaction dominated by proton tunneling. Science 312:237–241PubMedCrossRefGoogle Scholar
  22. 22.
    Nagel ZD, Klinman JP (2009) A 21st century revisionist’s view at a turning point in enzymology. Nat Chem Biol 5:543–550PubMedCrossRefGoogle Scholar
  23. 23.
    Nashine VC, Hammes-Schiffer S, Benkovic SJ (2010) Coupled motions in enzyme catalysis. Curr Opin Chem Biol 14:644–651PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Schwartz SD, Schramm VL (2009) Enzymatic transition states and dynamic motion in barrier crossing. Nat Chem Biol 5:551–558PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Agarwal PK (2005) Role of protein dynamics in reaction rate enhancement by enzymes. J Am Chem Soc 127:15248–15256PubMedCrossRefGoogle Scholar
  26. 26.
    Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450:964–972PubMedCrossRefGoogle Scholar
  27. 27.
    Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254:1598–1603PubMedCrossRefGoogle Scholar
  28. 28.
    Frauenfelder H, Chen G, Berendzen J et al (2009) A unified model of protein dynamics. Proc Natl Acad Sci USA 106:5129–5134PubMedCrossRefGoogle Scholar
  29. 29.
    Johnson Q, Doshi U, Shen T et al (2010) Water’s contribution to the energetic roughness from peptide dynamics. J Chem Theory Comput 6:2591–2597CrossRefGoogle Scholar
  30. 30.
    Kleckner IR, Foster MP (2011) An introduction to NMR-based approaches for measuring protein dynamics. Biochim Biophys Acta 1814:942–968PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Eisenmesser EZ, Bosco DA, Akke M et al (2002) Enzyme dynamics during catalysis. Science 295:1520–1523PubMedCrossRefGoogle Scholar
  32. 32.
    Eisenmesser EZ, Millet O, Labeikovsky W et al (2005) Intrinsic dynamics of an enzyme underlies catalysis. Nature 438:117–121PubMedCrossRefGoogle Scholar
  33. 33.
    Min W, English BP, Luo G et al (2005) Fluctuating enzymes: lessons from single-molecule studies. Acc Chem Res 38:923–931PubMedCrossRefGoogle Scholar
  34. 34.
    English BP, Min W, van Oijen AM et al (2006) Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. Nat Chem Biol 2:87–94PubMedCrossRefGoogle Scholar
  35. 35.
    McGeagh JD, Ranaghan KE, Mulholland AJ (2011) Protein dynamics and enzyme catalysis: insights from simulations. Biochim Biophys Acta 1814:1077–1092PubMedCrossRefGoogle Scholar
  36. 36.
    Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652PubMedCrossRefGoogle Scholar
  37. 37.
    Friedrichs MS, Eastman P, Vaidyanathan V et al (2009) Accelerating molecular dynamic simulation on graphics processing units. J Comput Chem 30:864–872PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Shaw DE, Dror RO, Salmon JK et al (2009) Millisecond-scale molecular dynamics simulations on Anton. In: Proceedings of the conference on high performance computing networking, storage and analysis, ACM, Portland, OR, pp 1–11Google Scholar
  39. 39.
    Stone JE, Phillips JC, Freddolino PL et al (2007) Accelerating molecular modeling applications with graphics processors. J Comput Chem 28:2618–2640PubMedCrossRefGoogle Scholar
  40. 40.
    Doshi U, McGowan LC, Ladani ST et al (2012) Resolving the complex role of enzyme conformational dynamics in catalytic function. Proc Natl Acad Sci USA 109:5699–5704PubMedCrossRefGoogle Scholar
  41. 41.
    Lee J, Kim SS (2010) An overview of cyclophilins in human cancers. J Int Med Res 38:1561–1574PubMedCrossRefGoogle Scholar
  42. 42.
    Amadei A, Linssen AB, Berendsen HJ (1993) Essential dynamics of proteins. Proteins 17:412–425PubMedCrossRefGoogle Scholar
  43. 43.
    Levy RM, Srinivasan AR, Olson WK et al (1984) Quasi-harmonic method for studying very low frequency modes in proteins. Biopolymers 23:1099–1112PubMedCrossRefGoogle Scholar
  44. 44.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38, 27–38PubMedCrossRefGoogle Scholar
  45. 45.
    Mongan J (2004) Interactive essential dynamics. J Comput Aided Mol Des 18:433–436PubMedCrossRefGoogle Scholar
  46. 46.
    McGowan LC, Hamelberg D (2013) Conformational plasticity of an enzyme during catalysis: intricate coupling between cyclophilin A dynamics and substrate turnover. Biophys J 104:216–226PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Ramanathan A, Agarwal PK (2011) Evolutionarily conserved linkage between enzyme fold, flexibility, and catalysis. PLoS Biol 9:e1001193PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103:227–249PubMedCrossRefGoogle Scholar
  49. 49.
    Gao J, Truhlar DG (2002) Quantum mechanical methods for enzyme kinetics. Annu Rev Phys Chem 53:467–505PubMedCrossRefGoogle Scholar
  50. 50.
    Dybala-Defratyka A, Paneth P, Truhlar DG (2009) Quantum catalysis in enzymes. In: Scrutton NS, Allemann RK (eds) Quantum tunnelling in enzyme-catalysed reactions. The Royal Society of Chemistry, CambridgeGoogle Scholar
  51. 51.
    Friesner RA, Guallar V (2005) Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Annu Rev Phys Chem 56:389–427PubMedCrossRefGoogle Scholar
  52. 52.
    Senn HM, Thiel W (2007) QM/MM studies of enzymes. Curr Opin Chem Biol 11:182–187PubMedCrossRefGoogle Scholar
  53. 53.
    Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed Engl 48:1198–1229PubMedCrossRefGoogle Scholar
  54. 54.
    Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23:187–199CrossRefGoogle Scholar
  55. 55.
    Zwanzig RW (1954) High-temperature equation of state by a perturbation method. I. Nonpolar gases. J Chem Phys 22:1420–1426CrossRefGoogle Scholar
  56. 56.
    Kamerlin SCL, Warshel A (2011) The empirical valence bond model: theory and applications. Wiley Interdiscip Rev Comput Mol Sci 1:30–45CrossRefGoogle Scholar
  57. 57.
    Fan Y, Cembran A, Ma S et al (2013) Connecting protein conformational dynamics with catalytic function as illustrated in dihydrofolate reductase. Biochemistry 52:2036–2049PubMedCrossRefGoogle Scholar
  58. 58.
    Hammes-Schiffer S (2013) Catalytic efficiency of enzymes: a theoretical analysis. Biochemistry 52(12):2012–2020PubMedCrossRefGoogle Scholar
  59. 59.
    Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120:11919–11929PubMedCrossRefGoogle Scholar
  60. 60.
    Doshi U, Hamelberg D (2011) Extracting realistic kinetics of rare activated processes from accelerated molecular dynamics using Kramers’ theory. J Chem Theory Comput 7:575–581CrossRefGoogle Scholar
  61. 61.
    Markwick PR, Bouvignies G, Blackledge M (2007) Exploring multiple timescale motions in protein GB3 using accelerated molecular dynamics and NMR spectroscopy. J Am Chem Soc 129:4724–4730PubMedCrossRefGoogle Scholar
  62. 62.
    Hamelberg D, McCammon JA (2009) Mechanistic insight into the role of transition-state stabilization in cyclophilin A. J Am Chem Soc 131:147–152PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Xin Y, Doshi U, Hamelberg D (2010) Examining the limits of time reweighting and Kramers’ rate theory to obtain correct kinetics from accelerated molecular dynamics. J Chem Phys 132:224101PubMedCrossRefGoogle Scholar
  64. 64.
    Hamelberg D, Shen T, Andrew McCammon J (2005) Relating kinetic rates and local energetic roughness by accelerated molecular-dynamics simulations. J Chem Phys 122:241103PubMedCrossRefGoogle Scholar
  65. 65.
    Doshi U, Hamelberg D (2012) Improved statistical sampling and accuracy with accelerated molecular dynamics on rotatable torsions. J Chem Theory Comput 8:4004–4012CrossRefGoogle Scholar
  66. 66.
    Klinman JP (2013) Importance of protein dynamics during enzymatic C–H bond cleavage catalysis. Biochemistry 52:2068–2077PubMedCrossRefGoogle Scholar
  67. 67.
    Kohen A (2012) Enzyme dynamics: consensus and controversy. J Biocatal Biotransform 1:1–2CrossRefGoogle Scholar
  68. 68.
    Henzler-Wildman KA, Thai V, Lei M et al (2007) Intrinsic motions along an enzymatic reaction trajectory. Nature 450:838–844PubMedCrossRefGoogle Scholar
  69. 69.
    Boehr DD, McElheny D, Dyson HJ et al (2006) The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313:1638–1642PubMedCrossRefGoogle Scholar
  70. 70.
    Bhabha G, Lee J, Ekiert DC et al (2011) A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis. Science 332:234–238PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Adamczyk AJ, Cao J, Kamerlin SC et al (2011) Catalysis by dihydrofolate reductase and other enzymes arises from electrostatic preorganization, not conformational motions. Proc Natl Acad Sci USA 108:14115–14120PubMedCrossRefGoogle Scholar
  72. 72.
    Liu H, Warshel A (2007) The catalytic effect of dihydrofolate reductase and its mutants is determined by reorganization energies. Biochemistry 46:6011–6025PubMedCrossRefGoogle Scholar
  73. 73.
    Nagel ZD, Klinman JP (2010) Update 1 of: tunneling and dynamics in enzymatic hydride transfer. Chem Rev 110:PR41–PR67PubMedCrossRefGoogle Scholar
  74. 74.
    Loveridge EJ, Behiry EM, Guo J et al (2012) Evidence that a ‘dynamic knockout’ in Escherichia coli dihydrofolate reductase does not affect the chemical step of catalysis. Nat Chem 4:292–297PubMedCrossRefGoogle Scholar
  75. 75.
    Agarwal PK, Billeter SR, Rajagopalan PT et al (2002) Network of coupled promoting motions in enzyme catalysis. Proc Natl Acad Sci USA 99:2794–2799PubMedCrossRefGoogle Scholar
  76. 76.
    Wong KF, Selzer T, Benkovic SJ et al (2005) Impact of distal mutations on the network of coupled motions correlated to hydride transfer in dihydrofolate reductase. Proc Natl Acad Sci USA 102:6807–6812PubMedCrossRefGoogle Scholar
  77. 77.
    Antoniou D, Basner J, Nunez S et al (2006) Computational and theoretical methods to explore the relation between enzyme dynamics and catalysis. Chem Rev 106:3170–3187PubMedCrossRefGoogle Scholar
  78. 78.
    Saen-Oon S, Quaytman-Machleder S, Schramm VL et al (2008) Atomic detail of chemical transformation at the transition state of an enzymatic reaction. Proc Natl Acad Sci USA 105:16543–16548PubMedCrossRefGoogle Scholar
  79. 79.
    Boekelheide N, Salomon-Ferrer R, Miller TF 3rd (2011) Dynamics and dissipation in enzyme catalysis. Proc Natl Acad Sci USA 108:16159–16163PubMedCrossRefGoogle Scholar
  80. 80.
    Loveridge EJ, Tey LH, Behiry EM et al (2011) The role of large-scale motions in catalysis by dihydrofolate reductase. J Am Chem Soc 133:20561–20570PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Kamerlin SC, Mavri J, Warshel A (2010) Examining the case for the effect of barrier compression on tunneling, vibrationally enhanced catalysis, catalytic entropy and related issues. FEBS Lett 584:2759–2766PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Glowacki DR, Harvey JN, Mulholland AJ (2012) Protein dynamics and enzyme catalysis: the ghost in the machine? Biochem Soc Trans 40:515–521PubMedCrossRefGoogle Scholar
  83. 83.
    Hay S, Johannissen LO, Sutcliffe MJ et al (2010) Barrier compression and its contribution to both classical and quantum mechanical aspects of enzyme catalysis. Biophys J 98:121–128PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Hay S, Scrutton NS (2012) Good vibrations in enzyme-catalysed reactions. Nat Chem 4:161–168PubMedCrossRefGoogle Scholar
  85. 85.
    Karplus M (2010) The role of conformation transitions in adenylate kinase. Proc Natl Acad Sci USA 107:E71PubMedCrossRefGoogle Scholar
  86. 86.
    Pisliakov AV, Cao J, Kamerlin SC et al (2009) Enzyme millisecond conformational dynamics do not catalyze the chemical step. Proc Natl Acad Sci USA 106:17359–17364PubMedCrossRefGoogle Scholar
  87. 87.
    Doshi U, Hamelberg D (2009) Re-optimization of the AMBER force field parameters for peptide bond (Omega) torsions using accelerated molecular dynamics. J Phys Chem B 113:16590–16595PubMedCrossRefGoogle Scholar
  88. 88.
    Kern D, Kern G, Scherer G et al (1995) Kinetic analysis of cyclophilin-catalyzed prolyl cis/trans isomerization by dynamic NMR spectroscopy. Biochemistry 34:13594–13602PubMedCrossRefGoogle Scholar
  89. 89.
    Cornell WD, Cieplak P, Bayly CI et al (1995) A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J Am Chem Soc 117:5179–5197CrossRefGoogle Scholar
  90. 90.
    Provencher SW (1976) An eigenfunction expansion method for the analysis of exponential decay curves. J Chem Phys 64:2772–2777CrossRefGoogle Scholar
  91. 91.
    Provencher SW (1976) A Fourier method for the analysis of exponential decay curves. Biophys J 16:27–41PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115CrossRefGoogle Scholar
  93. 93.
    Garcia-Viloca M, Gao J, Karplus M et al (2004) How enzymes work: analysis by modern rate theory and computer simulations. Science 303:186–195PubMedCrossRefGoogle Scholar
  94. 94.
    Olsson MH, Parson WW, Warshel A (2006) Dynamical contributions to enzyme catalysis: critical tests of a popular hypothesis. Chem Rev 106:1737–1756PubMedCrossRefGoogle Scholar
  95. 95.
    Glowacki DR, Harvey JN, Mulholland AJ (2012) Taking Ockham’s razor to enzyme dynamics and catalysis. Nat Chem 4:169–176PubMedCrossRefGoogle Scholar
  96. 96.
    Kramers HA (1940) Brownian motion in a field of force and diffusion model of chemical reactions. Physica (Utrecht) 7:284–304CrossRefGoogle Scholar
  97. 97.
    Castillo R, Roca M, Soriano A et al (2008) Using Grote-Hynes theory to quantify dynamical effects on the reaction rate of enzymatic processes. The case of methyltransferases. J Phys Chem B 112:529–534PubMedCrossRefGoogle Scholar
  98. 98.
    Truhlar DG (2010) Tunneling in enzymatic and nonenzymatic hydrogen transfer reactions. J Phys Org Chem 23:660–676CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Chemistry and the Center for Biotechnology and Drug DesignGeorgia State UniversityAtlantaUSA

Personalised recommendations