Advertisement

Near-Optimal Moire Grating for Chaotic Dynamic Visual Cryptography

  • Rita Palivonaite
  • Algimantas Fedaravicius
  • Algiment Aleksa
  • Minvydas Ragulskis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8237)

Abstract

Image hiding based on chaotic oscillations and near-optimal moire gratings is presented in this paper. The secret image is embedded into a single cover image. The encrypted secret image appears in a form of time-averaged moire fringes when the cover image is oscillated in a predefined direction, according to a chaotic law of motion. The criterion of the optimality of a moire grating is based on the absolute difference between the standard deviation of time-averaged images of near-optimal moire gratings in the background and in the zones associated to the secret image. Genetic algorithms are used for the identification of a nearoptimal set of moire gratings for image hiding applications. Numerical experiments are used to illustrate the functionality of the method.

Keywords

Visual cryptography Time-averaged moire fringes Chaotic oscillations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Naor, M., Shamir, A.: Visual cryptography. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  2. 2.
    Blundo, C., De Santis, A., Naor, M.: Visual cryptography for grey level images. Inf. Process. Lett. 75(6), 255–259 (2000)CrossRefGoogle Scholar
  3. 3.
    Hou, Y.C.: Visual cryptography for color images. Pattern Recognition 36(7), 1619–1629 (2003)CrossRefGoogle Scholar
  4. 4.
    Shyu, S.J.: Efficient visual secret sharing scheme for color images. Pattern Recognition 39(5), 866–880 (2006)CrossRefzbMATHGoogle Scholar
  5. 5.
    Wang, D., Yi, F., Li, X.: Probabilistic visual secret sharing schemes for grey-scale images and color images. Information Sciences 181(11), 2189–2208 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Feng, J.B., Wu, H.C., Tsai, C.S., Chang, Y.F., Chu, Y.P.: Visual secret sharing for multiple secrets. Pattern Recognition 41(12), 3572–3581 (2008)CrossRefzbMATHGoogle Scholar
  7. 7.
    Shyu, S.J., Huang, S.Y., Lee, Y.K., Wang, R.Z., Chen, K.: Sharing multiple secrets in visual cryptography. Pattern Recognition 40(12), 3633–3651 (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    Lee, K.H., Chiu, P.L.: A high contrast and capacity efficient visual cryptography scheme for the encryption of multiple secret images. Optics Communications 284(12), 2730–2741 (2011)CrossRefGoogle Scholar
  9. 9.
    Chen, T.H., Wu, C.S.: Efficient multi-secret image sharing based on Boolean operations. Signal Processing 91(1), 90–97 (2011)CrossRefzbMATHGoogle Scholar
  10. 10.
    Shyu, S.J.: Image encryption by random grids. Pattern Recognition 40(3), 1014–1031 (2007)CrossRefzbMATHGoogle Scholar
  11. 11.
    Shyu, S.J.: Image encryption by multiple random grids. Pattern Recognition 42(7), 1582–1596 (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    Chen, T.H., Li, K.C.: Multi-image encryption by circular random grids. Information Sciences 189, 255–265 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wang, R.Z., Lan, Y.C., Lee, Y.K., Huang, S.Y., Shyu, S.J., Chia, T.L.: Incrementing visual cryptography using random grids. Optics Communications 283(21), 4242–4249 (2010)CrossRefGoogle Scholar
  14. 14.
    Chen, Y.C., Tsai, D.S., Horng, G.: A new authentication based cheating prevention scheme in Naor–Shamir’s visual cryptography. Journal of Visual Communication and Image Representation 23(8), 1225–1233 (2012)CrossRefGoogle Scholar
  15. 15.
    Ragulskis, M., Aleksa, A.: Image hiding based on time-averaging moire. Optics Communications 282(14), 2752–2759 (2009)CrossRefGoogle Scholar
  16. 16.
    Ragulskis, M., Aleksa, A., Navickas, Z.: Image hiding based on time-averaged fringes produced by non-harmonic oscillations. Journal of Optics A: Pure and Applied Optics 11(12), 125411 (2009)CrossRefGoogle Scholar
  17. 17.
    Sakyte, E., Palivonaite, R., Aleksa, A., Ragulskis, M.: Image hiding based on near-optimal moire gratings. Optics Communications 284(16-17), 3954–3964 (2011)CrossRefGoogle Scholar
  18. 18.
    Petrauskiene, V., Aleksa, A., Fedaravicius, A., Ragulskis, M.: Dynamic visual cryptography for optical control of vibration generation equipment. Optics and Lasers in Engineering 50(6), 869–876 (2012)CrossRefGoogle Scholar
  19. 19.
    Ragulskis, M., Navickas, Z.: Hash function construction based on time averaged moire. Discrete and Continuous Dynamical Systems - Series B 8(4), 1007–1020 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Fujji, H., Asakura, T.: Effect of the point spread function on the average contrast of image speckle patterns. Optics Communications 21, 80–84 (1977)CrossRefGoogle Scholar
  21. 21.
    Braat, J.J.M., van Haver, S., Janssen, A.J.E.M., Dirksen, P.: Assessment of optical systems by means of point-spread functions. Progress in Optics 51(6), 349–468 (2008)CrossRefGoogle Scholar
  22. 22.
    Ragulskis, M., Sanjuan, M.A., Saunoriene, L.: Applicability of time-average moire techniques for chaotic oscillations. Physical Review E 79(3), 036208 (2007)Google Scholar
  23. 23.
    Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Application to Biology, Control, and Artificial Intelligence, 2nd edn. The MIT Press, Cambridge (1992)Google Scholar
  24. 24.
    Whitley, D.: A genetic algorithm tutorial. Statistics Computing 4(2), 65–85 (1994)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Rita Palivonaite
    • 1
  • Algimantas Fedaravicius
    • 2
  • Algiment Aleksa
    • 1
  • Minvydas Ragulskis
    • 1
  1. 1.Research Group for Mathematical and Numerical Analaysis of Dynamical SystemsKaunas University of TechnologyKaunasLithuania
  2. 2.Institute of Defence TechnologiesKaunas University of TechnologyLithuania

Personalised recommendations