Bilateral Haptic Teleoperation of an Industrial Multirotor UAV

  • Sammy Omari
  • Minh-Duc Hua
  • Guillaume Ducard
  • Tarek Hamel
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 94)

Abstract

This chapter presents an intuitive laser-based teleoperation scheme to enable the safe operation of a multirotor UAV by an untrained user in a cluttered environment using a haptic joystick. An obstacle avoidance strategy is designed and implemented to autonomously modify the position setpoint of the UAV if necessary. This scheme includes a novel force-feedback algorithm to enable the user to feel surrounding environment of the UAV as well as the disturbances acting on it. The stability analysis of the whole teleoperation loop, including the nonlinear dynamics of both UAV and joystick, is provided. The implementation of the teleoperation scheme on the Flybox hexacopter platform by the company Skybotix is described. Finally, experimental results and videos are reported to demonstrate the successful implementation and the performance of the overall system.

Keywords

Aerial Robotics Teleoperation Haptics and Haptic Interfaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mahony, R., Schill, F., Corke, P., Oh, Y.S.: A new framework for force feedback teleoperation of robotic vehicles based on optical flow. In: IEEE Int. Conf. on Robotics and Automation, pp. 1079–1085 (2009)Google Scholar
  2. 2.
    Schill, F., Mahony, R., Corke, P., Cole, L.: Visual Force Feedback Teleoperation of the Insectbot Using Optic Flow. In: Australian Conf. on Robotics and Automation (2009)Google Scholar
  3. 3.
    Lam, T.M., Boschloo, H.W., Mulder, M., van Passen, M.M.: Artificial Force Field for Haptic Feedback in UAV Tele-operation. IEEE Trans. on Systems, Man, and Cybernetics- Part A: Systems and Humans 39(6), 1316–1330 (2009)CrossRefGoogle Scholar
  4. 4.
    Hua, M.-D., Rifai, H.: Obstacle Avoidance for Teleoperated Underactuated Aerial Vehicles using Telemetric Measurement. In: IEEE Conf. on Control and Decision, pp. 262–267 (2010)Google Scholar
  5. 5.
    Stramigioli, S., Mahony, R., Corke, P.: A Novel Approach to Haptic Teleoperation of Aerial Robot Vehicles. In: IEEE Int. Conf. on Robotics and Automation, pp. 5302–5308 (2010)Google Scholar
  6. 6.
    Rifai, H., Hua, M.-D., Hamel, T., Morin, P.: Haptic-based Bilateral Teleoperation of Underactuated Unmanned Aerial Vehicles. In: IFAC World Congress, Italy, pp. 13782–13788 (2011)Google Scholar
  7. 7.
    Mersha, A.Y., Stramigioli, S., Carloni, R.: Bilateral Teleoperation of Underactuated Unmanned Aerial Vehicles: The virtual Slave Concept. In: IEEE Int. Conf. on Robotics and Automation, Minnesota, pp. 4614–4620 (2012)Google Scholar
  8. 8.
    Lam, T.M., Mulder, M., Van Paassen, M.M.: Collision Avoidance in UAV Teleoperation with Time Delay. In: IEEE Int. Conf. on Systems, Man and Cybernetics, pp. 997–1002 (2007)Google Scholar
  9. 9.
    Mettler, B., Andersh, J., Papanikolopoulos, N.: A First Investigation into the Teleoperation of a miniature Rotorcraft. In: Khatib, O., Kumar, V., Pappas, G.J. (eds.) Experimental Robotics. STAR, vol. 54, pp. 191–199. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Suzuki, R., Matsumoto, T., Konno, A., Hoshino, Y., Go, K., Oosedo, A., Uchiyama, M.: Teleoperation of a Tail-sitter VTOL UAV. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1618–1623 (2010)Google Scholar
  11. 11.
    Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot modeling and control. John Wiley & Sons, Inc. (2006)Google Scholar
  12. 12.
    Hua, M.-D., Hamel, T., Morin, P., Samson, C.: A Control Approach for Thrust-Propelled Underactuated Vehicles and its Application to VTOL Drones. IEEE Trans. on Automatic Control 59(8), 1837–1853 (2009)MathSciNetGoogle Scholar
  13. 13.
    Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall (2002)Google Scholar
  14. 14.
    Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.: ROS: An open-source robot operating system. In: ICRA Workshop on Open Source Software (2009)Google Scholar
  15. 15.
    Abdessameud, A., Tayebi, A.: Formation control of VTOL Unmanned Aerial Vehicles with communication delays. Automatica 47, 2383–2394 (2011)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Weiss, S., Achtelik, M., Kneip, L., Scaramuzza, D., Siegwart, R.: Intuitive 3D Maps for MAV Terrain Exploration and Obstacle Avoidance. Journal of Intelligent and Robotic Systems 61, 473–493 (2011)CrossRefGoogle Scholar
  17. 17.
    Zilles, C.B.: A constraint-based god-object method for haptic display. In: IEEE Int. Conf. on Intelligent Robots ans Systems, pp. 146–151 (1995)Google Scholar
  18. 18.
    Dryanovski, I., Morris, W., Xiao, J.: Multi-Volume Occupancy Grids: an Efficient Probabilistic 3D Mapping Model for Micro Aerial Vehicles. In: IEEE Int. Conf. on Intelligent Robots ans Systems, pp. 1553–1559 (2010)Google Scholar
  19. 19.
    Holenstein, C., Zlot, R., Bosse, M.: Watertight surface reconstruction of caves from 3D laser data. In: IEEE Int. Conf. on Intelligent Robots ans Systems, pp. 3830–3837 (2011)Google Scholar
  20. 20.
    Hua, M.-D.: Contributions to the Automatic Control of Aerial Vehicles. Ph.D. thesis, University of Nice-Sophia Antipolis (2009)Google Scholar
  21. 21.
    Hua, M.-D., Hamel, T., Morin, P., Samson, C.: A control approach for thrust-propelled underactuated vehicles and its application to VTOL drones. IEEE Transactions on Automatic Control 54(8), 1837–1853 (2009)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Achtelik, M., Bachrach, A., He, R., Prentice, S., Roy, N.: Stereo vision and laser odometry for autonomous helicopters in GPS-denied indoor environments. In: Unmanned Systems Technology XI (2009)Google Scholar
  23. 23.
    Ducard, G., Hua, M.-D.: Discussion and practical aspects on control allocation for a multi-rotor helicopter. In: Conference on Unmanned Aerial Vehicle in Geomatics, pp. 1–6 (2011)Google Scholar
  24. 24.
    Dryanovski, I., Morris, W., Xiao, J.: An open-source pose estimation system for micro-air vehicles. In: IEEE Int. Conf. on Intelligent Robots ans Systems, pp. 4449–4454 (2011)Google Scholar
  25. 25.
    I3S Institute Homepage, http://tinyurl.com/i3s-cnrs (accessed 11:16 CET, May 30, 2013)
  26. 26.
    Hamel, T., Mahony, R., Lozano, R., Ostrowski, J.: Dynamic modelling and configuration stabilization for an X4-flyer. In: IFAC World Congress, pp. 200–212 (2002)Google Scholar
  27. 27.
    Rudin, K., Hua, M.-D., Ducard, G., Bouabdallah, S.: A Robust Attitude Controller and its Application to Quadrotor Helicopters. In: IFAC World Congress, pp. 10379–10384 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sammy Omari
    • 1
  • Minh-Duc Hua
    • 2
  • Guillaume Ducard
    • 3
  • Tarek Hamel
    • 3
  1. 1.Autonomous Systems Lab (ASL)ETH Zurich, Switzerland &, Skybotix AGZurichSwitzerland
  2. 2.Institut des Systèmes Intelligents et de Robotique (ISIR)CNRS-UPMCParisFrance
  3. 3.Laboratoire d’Informatique, Signaux et Systèmes (I3S)CNRS-UNSParisFrance

Personalised recommendations