Advertisement

Training with Corrupted Labels to Reinforce a Probably Correct Teamsport Player Detector

  • Pascaline Parisot
  • Berk Sevilmiş
  • Christophe De Vleeschouwer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8192)

Abstract

While the analysis of foreground silhouettes has become a key component of modern approach to multi-view people detection, it remains subject to errors when dealing with a single viewpoint. Besides, several works have demonstrated the benefit of exploiting classifiers to detect objects or people in images, based on local texture statistics. In this paper, we train a classifier to differentiate false and true positives among the detections computed based on a foreground mask analysis. This is done in a sport analysis context where people deformations are important, which makes it important to adapt the classifier to the case at hand, so as to take the teamsport color and the background appearance into account. To circumvent the manual annotation burden incurred by the repetition of the training for each event, we propose to train the classifier based on the foreground detector decisions. Hence, since the detector is not perfect, we face a training set whose labels might be corrupted. We investigate a set of classifier design strategies, and demonstrate the effectiveness of the approach to reliably detect sport players with a single view.

Keywords

detection random ferns corrupted label 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alahi, A., Jacques, L., Boursier, Y., Vandergheynst, P.: Sparsity driven people localization with a heterogeneous network of cameras. Jour. of MIV 41(1-2), 39–58 (2011)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees. Neural Computation 9(12), 1545–1588 (1997)CrossRefGoogle Scholar
  3. 3.
    Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proc. of COLT, pp. 92–100 (1998)Google Scholar
  4. 4.
    Bosch, A., Zisserman, A., Munoz, X.: Image classification using random forests and ferns. In: Proc. of ICCV (2007)Google Scholar
  5. 5.
    Chen, F., Delannay, D., De Vleeschouwer, C.: An autonomous framework to produce and distribute personalized team-sport video summaries: a basket-ball case study. IEEE Trans. on Multimedia 13(6), 1381–1394 (2011)CrossRefGoogle Scholar
  6. 6.
    Delannay, D., Danhier, N., De Vleeschouwer, C.: Detection and recognition of sports (wo)men from multiple views. In: Proc. of ACM/IEEE ICDSC (2009)Google Scholar
  7. 7.
    Dollar, P., Tu, Z., Perona, P., Belongie, S.: Integral channel features. In: Proc. of BMVC (2009)Google Scholar
  8. 8.
    Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: a benchmark. In: Proc. of IEEE CVPR (2009)Google Scholar
  9. 9.
    Felzenszwalb, P., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. on PAMI 32(9), 1627–1645 (2010)CrossRefGoogle Scholar
  10. 10.
    Fleuret, F., Berclaz, J., Lengagne, R., Fua, P.: Multi-camera people tracking with a probabilistic occupancy map. IEEE Trans. on PAMI 30(2), 267–282 (2008)CrossRefGoogle Scholar
  11. 11.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Jour. of CSS 55(1), 119–139 (1997)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Geurts, P., Ernst, D., Wehenkel, L.: Extremely Randomized Trees. Machine Learning 36(1), 3–42 (2006)CrossRefzbMATHGoogle Scholar
  13. 13.
    Khan, S.M., Shah, M.: A multiview approach to tracking people in crowded scenes using a planar homography constraint. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 133–146. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Levin, A., Viola, P., Freund, Y.: Unsupervised improvement of visual detectors using co-training. In: ICCV, pp. 626–633 (2003)Google Scholar
  15. 15.
    Marée, R., Geurts, P., Piater, J., Wehenkel, L.: Random subwindows for robust image classification. In: Proc. of IEEE CVPR, pp. 34–40 (2005)Google Scholar
  16. 16.
    Nair, V., Clark, J.J.: An unsupervised, online learning framework for moving object detection. In: Proc. of IEEE CVPR, vol. 2, pp. 317–324 (2004)Google Scholar
  17. 17.
    Ozuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast keypoint recognition using random ferns. IEEE Trans. on PAMI 32(3), 448–461 (2010)CrossRefGoogle Scholar
  18. 18.
    Roth, P., Grabner, H., Skočaj, D., Bischof, H., Leonardis, A.: Conservative visual learning for object detection with minimal hand labeling effort. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 293–300. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Viola, P., Jones, M.: Robust real-time object detection. In: Proc. of the Int. Workshop on SCTV (2001)Google Scholar
  20. 20.
    Xing, J., Ai, H., Liu, L., Lao, S.: Multiple player tracking in sports video: A dual-mode two-way bayesian inference approach with progressive observation modeling. IEEE Trans. on Image Processing 20(6), 1652–1667 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pascaline Parisot
    • 1
  • Berk Sevilmiş
    • 1
  • Christophe De Vleeschouwer
    • 1
  1. 1.ICTEAM-ELENUniversité Catholique de LouvainLouvain-La-NeuveBelgique

Personalised recommendations