Advertisement

A Key-Pose Similarity Algorithm for Motion Data Retrieval

  • Jan Sedmidubsky
  • Jakub Valcik
  • Pavel Zezula
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8192)

Abstract

Analysis of human motion data is an important task in many research fields such as sports, medicine, security, and computer animation. In order to fully exploit motion databases for further processing, effective and efficient retrieval methods are needed. However, such task is difficult primarily due to complex spatio-temporal variances of individual human motions and the rapidly increasing volume of motion data. In this paper, we propose a universal content-based subsequence retrieval algorithm for indexing and searching motion data. The algorithm is able to examine database motions and locate all their sub-motions that are similar to a query motion example. We illustrate the algorithm usability by indexing motion features in form of joint-angle rotations extracted from a real-life 68-minute human motion database. We analyse the algorithm time complexity and evaluate retrieval effectiveness by comparing the search results against user-defined ground truth. The algorithm is also incorporated in an online web application facilitating query definition and visualization of search results.

Keywords

Motion Data Motion Feature Range Query Dynamic Time Warping Retrieval Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baak, A., Müeller, M., Seidel, H.-P.: An Efficient Algorithm for Keyframe-based Motion Retrieval in the Presence of Temporal Deformations. In: 1st Int. Conf. on Multimedia Information Retrieval (MIR 2008), pp. 451–458. ACM Press (2008)Google Scholar
  2. 2.
    Chiu, C.-Y., Chao, S.-P., Wu, M.-Y., Yang, S.-N., Lin, H.-C.: Content-Based Retrieval for Human Motion Data. Journal of Visual Communication and Image Representation 15(3), 446–466 (2004)CrossRefGoogle Scholar
  3. 3.
    Choensawat, W., Choi, W., Hachimura, K.: Similarity Retrieval of Motion Capture Data Based on Derivative Features. Journal of Advanced Computational Intelligence and Intelligent Informatics 16(1), 13–23 (2012)CrossRefGoogle Scholar
  4. 4.
    Demuth, B., Röder, T., Müller, M., Eberhardt, B.: An Information Retrieval System for Motion Capture Data. In: Lalmas, M., MacFarlane, A., Rüger, S.M., Tombros, A., Tsikrika, T., Yavlinsky, A. (eds.) ECIR 2006. LNCS, vol. 3936, pp. 373–384. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Deng, Z., Gu, Q., Li, Q.: Perceptually Consistent Example-based Human Motion Retrieval. In: Symposium on Interactive 3D Graphics and Games (I3D 2009), pp. 191–198. ACM (2009)Google Scholar
  6. 6.
    Esling, P., Agon, C.: Time-Series Data Mining. ACM Computing Surveys 45(1), 1–12 (2012)CrossRefzbMATHGoogle Scholar
  7. 7.
    Forbes, K., Fiume, E.: An Efficient Search Algorithm for Motion Data Using Weighted PCA. In: SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 2005), pp. 67–76. ACM (2005)Google Scholar
  8. 8.
    Huang, T., Liu, H., Ding, G.: Motion Retrieval Based on Kinetic Features in Large Motion Database. In: 14th International Conference on Multimodal Interaction (ICMI 2012), pp. 209–216. ACM Press (2012)Google Scholar
  9. 9.
    Lan, R., Sun, H., Zhu, M.: Text-Like Motion Representation for Human Motion Retrieval. In: Yang, J., Fang, F., Sun, C. (eds.) IScIDE 2012. LNCS, vol. 7751, pp. 72–81. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Müller, M., Röder, T., Clausen, M., Eberhardt, B., Krüger, B., Weber, A.: Documentation Mocap Database HDM05. Tech. Rep. CG-2007-2 (2007)Google Scholar
  11. 11.
    Müller, M., Baak, A., Seidel, H.-P.: Efficient and Robust Annotation of Motion Capture Data. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 2009), p. 10. ACM Press (2009)Google Scholar
  12. 12.
    Müller, M., Röder, T., Clausen, M.: Efficient Content-based Retrieval of Motion Capture Data. In: SIGGRAPH 2005, pp. 677–685. ACM Press (2005)Google Scholar
  13. 13.
    Novak, D., Batko, M., Zezula, P.: Metric Index: An Efficient and Scalable Solution for Precise and Approximate Similarity Search. Inf. Sys. 36(4), 721–733 (2011)CrossRefGoogle Scholar
  14. 14.
    Park, J.P., Lee, K.H., Lee, J.: Finding Syntactic Structures from Human Motion Data. Computer Graphics 30(8), 2183–2193 (2011)Google Scholar
  15. 15.
    Ren, C., Lei, X., Zhang, G.: Motion Data Retrieval from Very Large Motion Databases. In: Int. Conf. on Virtual Reality and Visualization (ICVRV 2011), pp. 70–77 (2011)Google Scholar
  16. 16.
    Sedmidubsky, J., Valcik, J.: Retrieving Similar Movements in Motion Capture Data. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) SISAP 2013. LNCS, vol. 8199, pp. 325–330. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Wang, P., Lau, R.W.H., Zhang, M., Wang, J., Song, H., Pan, Z.: A Real-time Database Architecture for Motion Capture Data. In: 19th International Conference on Multimedia (MM 2011), pp. 1337–1340. ACM (2011)Google Scholar
  18. 18.
    Wu, S., Wang, Z., Xia, S.: Indexing and Retrieval of Human Motion Data by a Hierarchical Tree. In: 16th Symposium on Virtual Reality Software and Technology (VRST 2009), pp. 207–214. ACM Press (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jan Sedmidubsky
    • 1
  • Jakub Valcik
    • 1
  • Pavel Zezula
    • 1
  1. 1.Masaryk UniversityBrnoCzech Republic

Personalised recommendations