Perspective Multiscale Detection of Vehicles for Real-Time Forward Collision Avoidance Systems

  • Juan Diego Ortega
  • Marcos Nieto
  • Andoni Cortes
  • Julian Florez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8192)


This paper presents a single camera vehicle detection technique for forward collision warning systems suitable to be integrated in embedded platforms. It combines the robustness of detectors based on classification methods with an innovative perspective multi-scale procedure to scan the images that dramatically reduces the computational cost associated with robust detectors. In our experiments we compare different implementation classifiers in search for a trade-off between the real-time constraint of embedded platforms and the high detection rates required by safety applications.


Intelligent Transportation Systems Object Detection Machine Learning Pattern Recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arróspide, J.: GTI vehicle database (2012),
  2. 2.
    Arróspide, J.: Vision-based vehicle detection and tracking with a mobile camera using a statistical framework. Ph.D. thesis, Universidad Politécnica de Madrid (2012)Google Scholar
  3. 3.
    Bertozzi, M., Bombini, L., Cerri, P., Medici, P., Antonello, P.C., Miglietta, M.: Obstacle detection and classification fusing radar and vision. In: Intelligent Vehicles Symposium, pp. 608–613. IEEE (2008)Google Scholar
  4. 4.
    Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)zbMATHGoogle Scholar
  5. 5.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc. Computer Vision and Pattern Recognition, vol. 1, pp. 886–893. IEEE (2005)Google Scholar
  6. 6.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  7. 7.
    Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical view of boosting. The Annals of Statistics 28(2), 237–407 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hartley, R.I., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press (2004)Google Scholar
  9. 9.
    Kim, Z.: Robust lane detection and tracking in challenging scenarios. IEEE Transactions on Intelligent Transportation Systems 9(1), 16–26 (2008)CrossRefGoogle Scholar
  10. 10.
    Papageorgiou, C., Poggio, T.: A trainable system for object detection. International Journal of Computer Vision 38(1), 15–33 (2000)CrossRefzbMATHGoogle Scholar
  11. 11.
    Sun, Z., Bebis, G., Miller, R.: Improving the performance of on-road vehicle detection by combining gabor and wavelet features. In: Proc. Int. Conf. on Intelligent Transportation Systems, pp. 130–135. IEEE (2002)Google Scholar
  12. 12.
    Sun, Z., Bebis, G., Miller, R.: On-road vehicle detection using optical sensors: A review. In: Proc. International Conference on Intelligent Transportation Systems, pp. 585–590. IEEE (2004)Google Scholar
  13. 13.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. Computer Society Conf. on Computer Vision and Pattern Recognition, vol. 1, pp. 511–518. IEEE (2001)Google Scholar
  14. 14.
    Weber, M.: Caltech rear view car image database (1999),

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Juan Diego Ortega
    • 1
  • Marcos Nieto
    • 1
  • Andoni Cortes
    • 1
  • Julian Florez
    • 2
  1. 1.Vicomtech-IK4San SebastianSpain
  2. 2.Tecnun, University of NavarraSan SebastianSpain

Personalised recommendations