Advertisement

Automatic Monitoring of Pig Activity Using Image Analysis

  • Mohammad Amin Kashiha
  • Claudia Bahr
  • Sanne Ott
  • Christel P. H. Moons
  • Theo A. Niewold
  • Frank Tuyttens
  • Daniel Berckmans
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8192)

Abstract

The purpose of this study is to investigate the feasibility and validity of an automated image processing method to detect the activity status of pigs. Top-view video images were captured for forty piglets, housed ten per pen. Each pen was monitored by a top-view CCD camera. The image analysis protocol to automatically quantify activity consisted of several steps. First, in order to localise the pigs, ellipse fitting algorithms were employed. Subsequently, activity was calculated by subtracting image background and comparing binarised images. To validate the results, they were compared to labelled behavioural data (’active’ versus ’inactive’). This is the first study to show that activity status of pigs in a group can be determined using image analysis with an accuracy of 89.8 %. Since activity status is known to be associated with issues such as lameness, careful monitoring can give an accurate indication of the health and welfare of pigs.

Keywords

Activity status ellipse fitting pig eYeNamic image analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prakash, A., Stigler, M.: FAO Statistical Yearbook: Food And Agriculture Organization of the United Nations (2012), http://faostat.fao.org/
  2. 2.
    Cornou, C., Lundbye-Christensen, S., Kristensen, A.: Modelling and monitoring sows’ activity types in farrowing house using acceleration data. Comput. Electron. Agric. 76(2), 316–324 (2011)CrossRefGoogle Scholar
  3. 3.
    Moore, A.S., Spahr, S.L.: Activity Monitoring and an Enzyme Immunoassay for Milk Progesterone to Aid in the Detection of Estrus. J. Dairy Sci. 74(11), 3857–3862 (1991)CrossRefGoogle Scholar
  4. 4.
    Cornou, C., Lundbye-Christensen, S.: Classification of sows’ activity types from acceleration patterns using univariate and multivariate models. Comput. Electron. Agric. 72(2), 53–60 (2010)CrossRefGoogle Scholar
  5. 5.
    Hernandez-Jover, M., Schembri, N., Toribio, J., Holyoake, P.: Biosecurity risks associated with current identification practices of producers trading live pigs at livestock sales. Anim. 2(11), 1692–1699 (2008); PubMed PMID: WOS:000260907200017. English CrossRefGoogle Scholar
  6. 6.
    Lind, N.M., Vinther, M., Hemmingsen, R.P., Hansen, A.K.: Validation of a digital video tracking system for recording pig locomotor behaviour. J. Neurosci. Methods 143(2), 123–132 (2005)CrossRefGoogle Scholar
  7. 7.
    Cangar, Ö., Leroy, T., Guarino, M., Vranken, E., Fallon, R., Lenehan, J., et al.: Automatic real-time monitoring of locomotion and posture behaviour of pregnant cows prior to calving using online image analysis. Comput. Electron. Agric. 64(1), 53–60 (2008)CrossRefGoogle Scholar
  8. 8.
    Van der Stuyft, E., Schofield, C.P., Randall, J.M., Wambacq, P., Goedseels, V.: Development and application of computer vision systems for use in livestock production. Comput. Electron. Agric. 6(3), 243–265 (1991)CrossRefGoogle Scholar
  9. 9.
    Sherrier, R.H., Johnson, G.A.: Regionally Adaptive Histogram Equalization of the Chest. IEEE Trans. Med. Imaging. 6(1), 1–7 (1987)CrossRefGoogle Scholar
  10. 10.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man. Cybern. 9(1), 62–66 (1979)CrossRefGoogle Scholar
  11. 11.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, p. 793. Addison-Wesley Longman Publishing Co., Inc. (2001)Google Scholar
  12. 12.
    Zhang, G., Jayas, D.S., White, N.D.G.: Separation of Touching Grain Kernels in an Image by Ellipse Fitting Algorithm. Biosyst. Eng. 92(2), 135–142 (2005)CrossRefGoogle Scholar
  13. 13.
    Fitzgibbon, A., Pilu, M., Fisher, R.: Direct Least Square Fitting of Ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 476–480 (1999)CrossRefGoogle Scholar
  14. 14.
    Kashiha, M., Bahr, C., Ott, S., Moons, C.P.H., Niewold, T.A., Ödberg, F.O., et al.: Automatic identification of marked pigs in a pen using image pattern recognition. Comput. Electron. Agric. 93, 111–120 (2013)CrossRefGoogle Scholar
  15. 15.
    Leroy, T., Vranken, E., Van Brecht, A., Struelens, E., Sonck, B., Berckmans, D.: A computer vision method for on-line behavioral quantification of individually caged poultry. Transactions of the Asabe. 49(3), 795–802 (2006); PubMed PMID: WOS:000238860600023CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mohammad Amin Kashiha
    • 1
  • Claudia Bahr
    • 1
  • Sanne Ott
    • 2
    • 3
  • Christel P. H. Moons
    • 2
  • Theo A. Niewold
    • 3
  • Frank Tuyttens
    • 2
    • 4
  • Daniel Berckmans
    • 1
  1. 1.M3-BIORES - Measure, Model & Manage Bioresponses, Department of BiosystemsKU LeuvenLeuvenBelgium
  2. 2.Department of Animal Nutrition, Genetics, Production and EthologyGhent UniversityMerelbekeBelgium
  3. 3.Division of Livestock-Nutrition-Quality, Department of BiosystemsKU LeuvenLeuvenBelgium
  4. 4.Institute for Agricultural and Fisheries Research (ILVO,), Animal Sciences UnitMelleBelgium

Personalised recommendations