Advertisement

VTApi: An Efficient Framework for Computer Vision Data Management and Analytics

  • Petr Chmelar
  • Martin Pesek
  • Tomas Volf
  • Jaroslav Zendulka
  • Vojtech Froml
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8192)

Abstract

VTApi is an open source application programming interface designed to fulfill the needs of specific distributed computer vision data and metadata management and analytic systems and to unify and accelerate their development. It is oriented towards processing and efficient management of image and video data and related metadata for their retrieval, analysis and mining with the special emphasis on their spatio-temporal nature in real-world conditions. VTApi is a free extensible framework based on progressive and scalable open source software as OpenCV for high- performance computer vision and data mining, PostgreSQL for efficient data management, indexing and retrieval extended by similarity search and integrated with geography/spatio-temporal data manipulation.

Keywords

VTApi computer vision data management similarity search clustering API methodology spatio-temporal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guliato, D., et al.: POSTGRESQL-IE: An image-handling extension for postgreSQL. Journal of Digital Imaging 22, 149–165 (2009)CrossRefGoogle Scholar
  2. 2.
    Gelasca, E.D., et al.: CORTINA: Searching a 10 million + images database. Tech. rep. (September 2007), http://vision.ece.ucsb.edu/publications/elisa_VLDB_2007.pdf
  3. 3.
    Bastan, M., et al.: BilVideo-7: An MPEG-7- compatible video indexing and retrieval system. IEEE Multimedia 17, 62–73 (2010)CrossRefGoogle Scholar
  4. 4.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Singapore (2006)zbMATHGoogle Scholar
  5. 5.
    Chmelar, P., Lanik, A., Mlich, J.: SUNAR surveillance network augmented by retrieval. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010, Part II. LNCS, vol. 6475, pp. 155–166. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Döller, M., Kosch, H.: The MPEG-7 multimedia database system (MPEG-7 MMDB). J. Syst. Softw. 81(9), 1559–1580 (2008)CrossRefGoogle Scholar
  7. 7.
    Hellerstein, J.M., Naughton, J.F., Pfeffer, A.: Generalized search trees for database systems. In: VLDB 1995, Zurich, Switzerland, pp. 562–573. Morgan Kaufmann (1995)Google Scholar
  8. 8.
    Kosch, H.: Distributed Multimedia Database Technologies: Supported MPEG-7 and by MPEG-21. CRC Press, Boca Raton (2004)Google Scholar
  9. 9.
    Melton, J., Eisenberg, A.: SQL multimedia and application packages (SQL/MM). SIGMOD Rec. 30(4), 97–102 (2001)CrossRefGoogle Scholar
  10. 10.
    Smeaton, A.F., Over, P., Kraaij, W.: Evaluation campaigns and trecvid. In: MIR 2006: Proc. of the 8th ACM Int. Workshop on Multimedia Information Retrieval, pp. 321–330. ACM Press, New York (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Petr Chmelar
    • 2
  • Martin Pesek
    • 2
  • Tomas Volf
    • 2
  • Jaroslav Zendulka
    • 1
    • 2
  • Vojtech Froml
    • 2
  1. 1.IT4Innovations Centre of ExcellenceBrno University of TechnologyBrnoCzech Republic
  2. 2.Faculty of Information TechnologyBrno University of TechnologyBrnoCzech Republic

Personalised recommendations