Advertisement

Moving Object Detection System in Aerial Video Surveillance

  • Ahlem Walha
  • Ali Wali
  • Adel M. Alimi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8192)

Abstract

Moving object detection in aerial video, in which the camera is moving, is a complicated task. In this paper, we present a system to solve this problem by using scale invariant feature transform(SIFT) and Kalman Filter. Moving objects are detected by a feature point tracking method based on SIFT extraction and matching algorithm. In order to increase the precision of detection, some pre-processing methods are added to the surveillance system such as video stabilization and canny edge detection. Experimental results indicate that the suggested method of moving object detection can be achieved with a high detection ratio.

Keywords

Moving object detection Aerial surveillance scale invariant feature transform(SIFT) Digital video stabilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Battiato, S., Gallo, G., Puglisi, G., Scellato, S., Catania, S.S.D.: Sift features tracking for video stabilization. In: 14th International Conference on Image Analysis and Processing, pp. 825–830 (2007)Google Scholar
  2. 2.
    Bhat, K.S., Saptharishi, M., Khosla, P.K.: Motion detection and segmentation using image mosaics. In: IEEE International Conference on Multimedia and Expo 2000 (ICME), pp. 1577–1580 (2000)Google Scholar
  3. 3.
    Chakroun, M., Wali, A., Alimi, A.M.: Multi-agent system for moving object segmentation and tracking. In: 2011 8th IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS), pp. 424–429. IEEE (2011)Google Scholar
  4. 4.
    Cucchiara, R., Prati, A., Vezzani, R.: Advanced video surveillance with pan tilt zoom cameras. In: Proceedings of the Workshop on Visual Surveillance (VS) at ECCV 2006, Graz, Austria (May 2006)Google Scholar
  5. 5.
    Cuntoor, N.P., Basharat, A., Perera, A.G.A., Hoogs, A.: Track initialization in low frame rate and low resolution videos. In: 2010 International Conference on Pattern Recognition, pp. 3640–3644 (2010)Google Scholar
  6. 6.
    Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.: Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of the IEEE 90(7), 1151–1163 (2002)CrossRefGoogle Scholar
  7. 7.
    Guillot, C., Taron, M., Sayd, P., Pham, Q.C., Tilmant, C., Lavest, J.-M.: Background subtraction adapted to ptz cameras by keypoint density estimation. In: Proceedings of the British Machine Vision Conference, pp. 34.1–34.10. BMVA Press (2010), doi:10.5244/C.24.34Google Scholar
  8. 8.
    Hayman, E., Eklundh, J.-O.: Statistical background subtraction for a mobile observer. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, vol. 1, pp. 67–74 (2003)Google Scholar
  9. 9.
    Hu, R., Shi, R., Shen, I., Chen, W.: Video stabilization using scale-invariant features. In: The 11th International Conference Information Visualization, pp. 871–877 (2007)Google Scholar
  10. 10.
    Kitti, T., Jaruwan, T., Chaiyapon, T.: An object recognition and identification system using the harris corner detection method. International Journal of Machine Learning and Computing 2(4), 462–465 (2012)CrossRefGoogle Scholar
  11. 11.
    Ko, T., Soatto, S., Estrin, D.: Warping background subtraction. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1331–1338 (2010)Google Scholar
  12. 12.
    Lin, C.-C., Wolf, M.: Detecting moving objects using a camera on a moving platform. In: 20th IEEE International Conference on Pattern Recognition, pp. 460–463 (2010)Google Scholar
  13. 13.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 14(2), 91–110 (2004)CrossRefGoogle Scholar
  14. 14.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision (ijcai). In: Proceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI 1981), pp. 674–679 (April 1981)Google Scholar
  15. 15.
    Ren, Y., Chua, C.-S., Ho, Y.-K.: Motion detection with non-stationary background. In: Proceedings of the 11th International Conference on Image Analysis and Processing, pp. 78–83 (2001)Google Scholar
  16. 16.
    Robinault, L., Bres, S., Miguet, S.: Real time foreground object detection using PTZ camera. In: International Conference on Computer Vision, Theory and Applications (VISAPP 2009), pp. 609–614 (February 2009)Google Scholar
  17. 17.
    Teutsch, M., Kruger, W.: Detection, segmentation, and tracking of moving objects in uav videos. IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance 60(2), 91–110 (2012)Google Scholar
  18. 18.
    Thakoor, N., Gao, J.: Automatic object detection in video sequences with camera in motion (2004)Google Scholar
  19. 19.
    Walha, A., Wali, A., Alimi, A.M.: Support vector machine approach for detecting events in video streams. In: Hassanien, A.E., Salem, A.-B.M., Ramadan, R., Kim, T.-h. (eds.) AMLTA 2012. CCIS, vol. 322, pp. 143–151. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Wali, A., Alimi, A.M.: Incremental learning approach for events detection from large video dataset. In: Advanced Video and Signal Based Surveillance (AVSS), pp. 555–560 (2010)Google Scholar
  21. 21.
    Wali, A., Alimi, A.M.: Multimodal approach for video surveillance indexing and retrieval. Journal of Intelligent Computing 4(1), 165–175 (2010)Google Scholar
  22. 22.
    Wang, J., Bebis, G., Nicolescu, M., Nicolescu, M., Miller, R.: Improving target detection by coupling it with tracking. Mach. Vision Appl. 20(4), 205–223 (2009)CrossRefGoogle Scholar
  23. 23.
    Wang, Y., Zhang, Z., Wang, Y.: Moving object detection in aerial video. In: 2012 11th International Conference on Machine Learning and Applications, pp. 446–450 (2012)Google Scholar
  24. 24.
    Wang, Y., Chang, R., Chua, T., Leman, K.: Video stabilization based on high degree b-spline smoothing. In: 21st International Conference on Pattern Recognition, pp. 3152–3155 (2012)Google Scholar
  25. 25.
    Wang, Y., Hou, Z., Leman, K., Chang, R.: Real-time video stabilization for unmanned aerial vehicles. In: IAPR Conference on Machine Vision Applications, pp. 825–830 (2011)Google Scholar
  26. 26.
    Zhang, Y., Kiselewich, S., Bauson, W., Hammoud, R.: Robust moving object detection at distance in the visible spectrum and beyond using a moving camera. In: Conference on Computer Vision and Pattern Recognition Workshop, CVPRW 2006, p. 131 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ahlem Walha
    • 1
  • Ali Wali
    • 1
  • Adel M. Alimi
    • 1
  1. 1.REGIM: REsearch Groups on Intelligent MachinesUniversity of Sfax, National Engineering School of Sfax (ENIS)SfaxTunisia

Personalised recommendations