Advertisement

Painting Scene Recognition Using Homogenous Shapes

  • Razvan George Condorovici
  • Corneliu Florea
  • Constantin Vertan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8192)

Abstract

This paper addresses the problem of semantic analysis of paintings by automatic detection of the represented scene type. The solution comes as an incipient effort to fill the gap already stated in the literature between the low level computational analysis and the high level semantic dependent human analysis of paintings. Inspired by the way humans perceive art, we first decompose the image in homogenous regions, follow by a step of region merging, in order to obtain a painting description by the extraction of perceptual features of the dominant objects within the scene. These features are used in a classification process that discriminates among 5 possible scene types on a database of 500 paintings.

Keywords

scene analysis scene classification perceptual segmentation paintings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on PAMI 26(9), 1124–1137 (2004)CrossRefzbMATHGoogle Scholar
  2. 2.
    Carneiro, G., da Silva, N.P., Del Bue, A., Costeira, J.P.: Artistic image classification: An analysis on the PRINTART database. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 143–157. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Trans. on PAMI 24(5), 603–619 (2002)CrossRefGoogle Scholar
  4. 4.
    Cornelis, B., Dooms, A., Cornelis, J., Leen, F., Schelkens, P.: Digital painting analysis, at the cross section of engineering, mathematics and culture. In: Proc. of EUSIPCO, pp. 1254–1259 (2011)Google Scholar
  5. 5.
    Cour, T., Benezit, F., Shi, J.: Spectral segmentation with multiscale graph decomposition. In: Proc. of CVPR, vol. 2, pp. 1124–1131 (2005)Google Scholar
  6. 6.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc. of CVPR, pp. 886–893 (2005)Google Scholar
  7. 7.
    Deng, Y., Manjunath, B.S.: Unsupervised segmentation of color-texture regions in images and video. IEEE Trans. on PAMI 23, 800–810 (2001)CrossRefGoogle Scholar
  8. 8.
    Durand, F.: An invitation to discuss computer depiction. In: Proc. International Symposium on Non-Photorealistic Animation and Rendering, NPAR. pp. 111–124. ACM (2002)Google Scholar
  9. 9.
    Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: Proc. of CVPR, vol. 2, pp. 524–531 (2005)Google Scholar
  10. 10.
    Graham, D., Redies, C.: Statistical regularities in art: Relations with visual coding and perception. Vision Research 50(16), 1503–1509 (2010)CrossRefGoogle Scholar
  11. 11.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)CrossRefGoogle Scholar
  12. 12.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. on PAMI 26(2), 147–159 (2004)CrossRefzbMATHGoogle Scholar
  13. 13.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Proc. of CVPR, vol. 2, pp. 2169–2178 (2006)Google Scholar
  14. 14.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. IJCV 42(3), 145–175 (2001)CrossRefzbMATHGoogle Scholar
  15. 15.
    Ramachandran, V.S., Herstein, W.: The science of art: A neurological theory of aesthetic experience. Journal of Consciousness Studies 6, 15–51 (1999)Google Scholar
  16. 16.
    Shamir, L., Macura, T., Orlov, N., Eckley, D.M., Goldberg, I.G.: Impressionism, expressionism, surrealism: Automated recognition of painters and schools of art. ACM Transactions on Applied Perception 7(2), 1–17 (2010)CrossRefGoogle Scholar
  17. 17.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. on PAMI 22(8), 888–905 (2000)CrossRefGoogle Scholar
  18. 18.
    Stork, D.: Computer vision and computer graphics analysis of paintings and drawings: An introduction to the literature. In: Proc. of CAIP, pp. 9–24 (2009)Google Scholar
  19. 19.
    Wallraven, C., Fleming, R.W., Cunningham, D.W., Rigau, J., Feixas, M., Sbert, M.: Categorizing art: Comparing humans and computers. Computers & Graphics 33(4), 484–495 (2009)CrossRefGoogle Scholar
  20. 20.
    Wertheimer, M.: Principles of perceptual organization. Readings in Perception, 115–135 (1958)Google Scholar
  21. 21.
    Yorck, P.: The yorck project (December 2012) http://commons.wikimedia.org/wiki/Category:PD-Art_(Yorck_Project)Google Scholar
  22. 22.
    Zlatoff, N., Tellez, B., Baskurt, A.: Image understanding and scene models: a generic framework integrating domain knowledge and gestalt theory. In: Proc. of ICIP, vol. 4, pp. 2355–2358 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Razvan George Condorovici
    • 1
  • Corneliu Florea
    • 1
  • Constantin Vertan
    • 1
  1. 1.The Image Processing and Analysis Laboratory, LAPIUniversity ”Politehnica” of BucharestBucharestRomania

Personalised recommendations