Advertisement

Fast Road Network Extraction from Remotely Sensed Images

  • Vladimir A. Krylov
  • James D. B. Nelson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8192)

Abstract

This paper addresses the problem of fast, unsupervised road network extraction from remotely sensed images. We develop an approach that employs a fixed-grid, localized Radon transform to extract a redundant set of line segment candidates. The road network structure is then extracted by introducing interactions between neighbouring segments in addition to a data-fit term, based on the Bhattacharyya distance. The final configuration is obtained using simulated annealing via a Markov chain Monte Carlo iterative procedure. The experiments demonstrate a fast and accurate road network extraction on high resolution optical images of semi-urbanized zones, which is further supported by comparisons with several benchmark techniques.

Keywords

Road network remote sensing localized Radon transform Markov chain Monte Carlo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amo, M., Martinez, F., Torre, M.: Road extraction from aerial images using a region competition algorithm. IEEE Trans. Image Process 15(5), 1192–1201 (2006)CrossRefGoogle Scholar
  2. 2.
    Bracewell, R.: Two-Dimensional Imaging. Prentice Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  3. 3.
    Chai, D., Forstner, W., Lafarge, F.: Recovering line-networks in images by junction-point processes. In: Proc. of IEEE Conf. Computer Vision and Pattern Recognition, Portland, US (2013)Google Scholar
  4. 4.
    Gao, R., Bischof, W.F.: Detection of linear structures in remote-sensed images. In: Kamel, M., Campilho, A. (eds.) ICIAR 2009. LNCS, vol. 5627, pp. 896–905. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Geman, D., Jedynak, B.: An active testing model for tracking roads in satellite images. IEEE Trans. Patt. Anal. Mach. Intell. 18(1), 1–14 (1996)CrossRefGoogle Scholar
  6. 6.
    Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Patt. Anal. Mach. Intell. 6, 721–741 (1984)CrossRefzbMATHGoogle Scholar
  7. 7.
    Hastings, W.: Monte Carlo sampling method using Markov chains and their applications. Biometrika 57, 97–109 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Patt. Anal. Mach. Intell. 26(2), 147–159 (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Lacoste, C., Descombes, X., Zerubia, J.: Point processes for unsupervised line network extraction in remote sensing. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1568–1579 (2005)CrossRefzbMATHGoogle Scholar
  10. 10.
    Lafarge, F., Gimel’farb, G., Descombes, X.: Geometric feature extraction by a multimarked point process. IEEE Trans. Patt. Anal. Mach. Intell. 32(9), 1597–1609 (2010)CrossRefGoogle Scholar
  11. 11.
    Merlet, N., Zerubia, J.: New prospects in line detection by dynamic programming. IEEE Trans. Patt. Anal. Mach. Intell. 18(4), 426–431 (1996)CrossRefGoogle Scholar
  12. 12.
    Negri, M., Gamba, P., Lisini, G., Tupin, F.: Junction-aware extraction and regularization of urban road networks in high-resolution sar images. IEEE Trans. Geosci. Remote Sens., 2962–2971 (2006)Google Scholar
  13. 13.
    Papoulis, A.: Probability, Random Variables, and Stochastic Processes, 3rd edn. McGraw-Hill, New York (1991)zbMATHGoogle Scholar
  14. 14.
    Peng, T., Jermyn, I., Prinet, V., Zerubia, J.: Incorporating generic and specific prior knowledge in a multiscale phase field model for road extraction from VHR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 1(2), 139–146 (2008)CrossRefGoogle Scholar
  15. 15.
    Rochery, M., Jermyn, I., Zerubia, J.: Higher order active contours. Int. J. Comput. Vision 69, 27–42 (2006)CrossRefGoogle Scholar
  16. 16.
    Verdié, Y., Lafarge, F.: Efficient monte carlo sampler for detecting parametric objects in large scenes. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 539–552. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Zhang, Q., Couloigner, I.: Accurate centerline detection and line width estimation of thick lines using the Radon transform. IEEE Trans. Image Process 16(2), 310–316 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Zhou, J., Bischof, W., Caelli, T.: Road tracking in aerial images based on human–computer interaction and Bayesian filtering. ISPRS J. Photogramm. Remote Sens. 61(2), 108–124 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vladimir A. Krylov
    • 1
  • James D. B. Nelson
    • 1
  1. 1.Dept. of Statistical ScienceUniversity College LondonLondonUK

Personalised recommendations