Nanoscale Electrical Contacts Grown by Focused Ion Beam (FIB)-Induced Deposition

Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 20)


A detailed description of the use of the focused ion beam (FIB) to grow electrical contacts is presented. The combination of FIB with precursor compounds, which are delivered on the area of interest by means of gas-injection systems, allows the growth of electrical contacts with nanometric resolution on targeted places. The technique has been coined focused ion beam-induced deposition (FIBID). Pros and cons with respect to other existing techniques for contacting are discussed. The FIBID contacts reported in this chapter are based on the use of Pt and W precursors, which result in the growth of deposits with resistivities down to 100 μΩ cm without any post-treatment. A comparison of FIBID with focused electron beam-induced deposition, the sister technique that uses focused electrons instead of ions, is also presented. The steps to follow in order to be successful in the contacting process by means of FIBID are described. Examples of the contacting to individual nanowires and nanoparticles carried out in our laboratory are shown, together with the corresponding four-probe transport measurements. Below 5 K, W deposits are superconducting and can be therefore used for zero-resistance lead contacts, superconductor-based nanocontacts and probing of proximity effects, opening new perspectives as described here.


Focused ion beam Focused ion beam-induced deposition Electrical contacts Superconducting contacts Electrical transport Nanoscale probing Nanocontacts Nanowires Nanoparticles 



We warmly acknowledge our close collaborators in the work presented in this chapter: J. Arbiol, L. Casado, I. Guillamón, N. Marcano, L. Morellón, D. Muñoz-Rojas, L. Pérez, M. Plaza, J. Sesé, H. Suderow and S. Vieira. Financial support by the Spanish Ministry of Economy (through project MAT2011-27553-C02, including FEDER funding) and the Aragón Regional Government is acknowledged.


  1. 1.
    Xia, Y., Rogers, J.A., Paul, K.E., Whitesides, G.M.: Unconventional methods for fabricating and patterning nanostructures. Chem. Rev. 99, 1823 (1999)CrossRefGoogle Scholar
  2. 2.
    Martín, J.I., Nogués, J., Liu, K., Vicent, J.L., Schuller, I.K.: Ordered magnetic structures: fabrication and properties. J. Magn. Magn. Mater. 256, 449 (2003)CrossRefGoogle Scholar
  3. 3.
    Fan, J., Michalik, J., Casado, L., Roddaro, S., Ibarra, M.R., De Teresa, J.M.: Investigation of the influence on graphene by using electron-beam and photo-lithography. Solid State Commun. 151, 1574–1578 (2011)CrossRefGoogle Scholar
  4. 4.
    Bezryadin, A., Verschueren, A.R.M., Tans, S.J., Dekker, C.: Multiprobe transport experiments on individual single-wall carbon nanotubes. Phys. Rev. Lett. 80, 4036–4039 (1998)CrossRefGoogle Scholar
  5. 5.
    Gao, B., Chen, Y.F., Fuhrer, M.S., Glattli, D.C., Bachtold, A.: Four-point resistance of individual single-wall carbon nanotubes. Phys. Rev. Lett. 95, 196802 (2005)CrossRefGoogle Scholar
  6. 6.
    Utke, I., Hoffmann, P., Melngailis, J.: Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sci. Tech. B 26, 1197–1276 (2008)CrossRefGoogle Scholar
  7. 7.
    Kim, C.-S., Ahn, S.-H., Yang, D.-Y.: Review: developments in micro/nanoscale fabrication by focused ion beams. Vacuum 86, 1014–1035 (2012)CrossRefGoogle Scholar
  8. 8.
    Russell, P.E., Utke, I., Moshkalev, S. (eds.): Nanofabrication using focused ion and electron beams: principles and applications. Oxford University Press, New York, NY (2012). ISBN 9780199734214Google Scholar
  9. 9.
    Li, W.X., Warburton, P.A.: Low-current focused-ion-beam induced deposition of three-dimensional tungsten nanoscale conductors. Nanotechnology 18, 485305 (2007)CrossRefGoogle Scholar
  10. 10.
    Giannuzzi, L.A., Stevie, F.A.: Introduction to Focused Ion Beams. Springer Science, Boston, MA (2005)CrossRefGoogle Scholar
  11. 11.
    Chen, P., Van Veldhoven, E., Sanford, C.A., Salemink, H.W.M., Maas, D.J., Smith, D.A., Rack, P.D., Alkemade, P.F.A.: Nanopillar growth by focused ion helium ion-beam-induced deposition. Nanotechnology 21, 455302 (2010)CrossRefGoogle Scholar
  12. 12.
    Gopal, V., Radmilovic, V.R., Daraio, C., Jin, S., Yang, P., Stach, E.A.: Rapid prototyping of site-specific nanocontacts by electron and ion beam assisted direct-write nanolithography. Nanoletters 4, 2059–2063 (2004)CrossRefGoogle Scholar
  13. 13.
    Botman, A., Mulders, J.J.L., Weemaes, R., Mentink, S.: Purification of platinum and gold structures after electron-beam-induced deposition. Nanotechnology 17, 3779–3785 (2006)CrossRefGoogle Scholar
  14. 14.
    Córdoba, R., Sesé, J., De Teresa, J.M., Ibarra, M.R.: High-purity cobalt nanostructures grown by focused-electron-beam-induced deposition at low current. Microelectron. Eng. 87, 1550–1553 (2010)CrossRefGoogle Scholar
  15. 15.
    Langford, R.M., Ozkaya, D., Sheridan, J., Chater, R.: Effects of water vapour on electron and ion beam deposited platinum. Microsc. Microanal. 10, 1122–1123 (2004)CrossRefGoogle Scholar
  16. 16.
    Takeguchi, M., Shimojo, M., Furuya, K.: Post-deposition processes for nanostructures formed by electron beam induced deposition with Pt(PF3)4 precursor. Appl. Phys. A 93, 439–442 (2008)CrossRefGoogle Scholar
  17. 17.
    Botman, A., Mulders, J.J.L., Hagen, C.W.: Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective. Nanotechnology 20, 372001 (2008)CrossRefGoogle Scholar
  18. 18.
    Schwamb, T., Burg, B.R., Schirmer, N.C., Poulikakos, D.: On the effect of the electrical contact resistance in nanodevices. Appl. Phys. Lett. 92, 243106 (2008)CrossRefGoogle Scholar
  19. 19.
    Tham, D., Nam, C.-Y., Fischer, J.E.: Microstructure and composition of focused-ion-beam deposited Pt contacts to GaN nanowires. Adv. Mater. 18, 290–294 (2006)CrossRefGoogle Scholar
  20. 20.
    Nam, C.-Y., Tham, D., Fischer, J.E.: Disorder effects in focused-ion-beam deposited Pt contacts on GaN nanowire. Nanoletters 5, 2029–2033 (2005)CrossRefGoogle Scholar
  21. 21.
    Hernández-Ramírez, F., Tarancón, A., Casals, O., Rodríguez, J., Romano-Rodríguez, A., Morante, J.R., Barth, S., Mathur, S., Choi, T.Y., Poulikakos, D., Callegari, V., Nellen, P.M.: Fabrication and electrical characterization of circuits based on individual tin oxide nanowires. Nanotechnology 17, 5577–5583 (2006)CrossRefGoogle Scholar
  22. 22.
    Hernández-Ramírez, F., Prades, J.D., Tarancón, A., Barth, S., Casals, O., Jiménez-Díaz, R., Pellicer, E., Rodríguez, J., Juli, M.A., Romano-Rodríguez, A., Morante, J.R., Mathur, S., Helwig, A., Spannhake, J., Mueller, G.: Portable microsensors based on individual SnO2 nanowires. Nanotechnology 18, 495501 (2007)CrossRefGoogle Scholar
  23. 23.
    Cronin, S.B., Lin, Y.-M., Rabin, O., Black, M.R., Ying, J.Y., Dresselhaus, M.S., Gai, P.L., Minet, J.-P., Issi, J.-P.: Making electrical contacts to nanowires with a thick oxide coating. Nanotechnology 13, 653–658 (2002)CrossRefGoogle Scholar
  24. 24.
    Fàbrega, C., Hernández-Ramírez, F., Prades, J.D., Jiménez-Díaz, R., Andreu, T., Morante, J.R.: On the photoconduction properties of low resistivity TiO2 nanotubes. Nanotechnology 21, 445703 (2010)CrossRefGoogle Scholar
  25. 25.
    Moshkalev, S.A., León, J., Verissimo, C., Vaz, A.R., Flacker, A., de Moraes, M.B., Swart, J.W.: Controlled deposition and electrical characterization of multi-wall carbon nanotubes. J. Nano Res. 3, 25–32 (2008)CrossRefGoogle Scholar
  26. 26.
    De Marzi, G., Iacopino, D., Quinn, A.J., Redmond, G.: Probing intrinsic transport properties of single metal nanowires: direct-write contact formation using a focused ion beam. J. Appl. Phys. 96, 3458 (2004)CrossRefGoogle Scholar
  27. 27.
    Valizadeh, S., Abid, M., Hernández-Ramírez, F., Romano-Rodríguez, A., Hjort, K., Schweitz, J.A.: Template synthesis and forming electrical contacts to single Au nanowires by focused ion beam techniques. Nanotechnology 17, 1134–1139 (2006)CrossRefGoogle Scholar
  28. 28.
    Fernández-Pacheco, A., De Teresa, J.M., Córdoba, R., Ibarra, M.R.: Metal-insulator transition in Pt-C nanowires grown by focused-ion-beam-induced deposition. Phys. Rev. B 79, 174204 (2009)CrossRefGoogle Scholar
  29. 29.
    Lin, J.-F., Bird, J.P., Rotkina, L., Sergeev, A., Mitin, V.: Large effects due to electron-phonon-impurity interference in the resistivity of Pt/C-Ga composite nanowires. Appl. Phys. Lett. 84, 3828–3830 (2004)CrossRefGoogle Scholar
  30. 30.
    Tsukatani, Y., Yamasaki, N., Murakami, K., Wakaya, F., Takai, M.: Transport properties of Pt nanowires fabricated by beam-induced deposition. Jpn. J. Appl. Phys. 44, 5683–5686 (2005)CrossRefGoogle Scholar
  31. 31.
    Tao, T., Ro, J., Melngailis, J.: Focused ion beam deposition of Pt. J. Vac. Sci. Technol. B 8, 1826–1829 (1990)CrossRefGoogle Scholar
  32. 32.
    Puretz, J., Sawson, L.W.: Focused ion beam deposition of Pt containing films. J. Vac. Sci. Technol. B 10, 2695–2698 (1992)CrossRefGoogle Scholar
  33. 33.
    Telari, K.A., Rogers, B.R., Fang, H., Shen, L., Weller, R.A., Braski, D.N.: Characterization of Pt films deposited by focused ion beam-assisted chemical vapour deposition. J. Vac. Sci. Technol. B 20, 590–595 (2002)CrossRefGoogle Scholar
  34. 34.
    Langford, R.M., Wang, T.-X., Ozkaya, D.: Reducing the resistivity of electron and ion beam assisted deposited Pt. Microelectron. Eng. 84, 784–788 (2007)CrossRefGoogle Scholar
  35. 35.
    Peñate-Quesada, L., Mitra, J., Dawson, P.: Non-linear electronic transport in Pt nanowires deposited by focused ion beam. Nanotechnology 18, 215203 (2007)CrossRefGoogle Scholar
  36. 36.
    Vaz, A.R., Macchi, M., Leon, J., Moshkalev, S.A., Swart, J.W.: Platinum thin films deposited on silicon oxide by focused ion beam: characterization and application. J. Mater. Sci. 43, 3429–3434 (2008)CrossRefGoogle Scholar
  37. 37.
    De Teresa, J.M., Córdoba, R., Fernández-Pacheco, A., Montero, O., Strichovanec, P., Ibarra, M.R.: Origin of the difference in the resistivity of as-grown focused-ion and focused-electron-beam-induced Pt nanodeposits. J. Nanomater. 2009, 936863 (2009)CrossRefGoogle Scholar
  38. 38.
    Mott, N.F., Davis, E.A.: Electronic Processes in Non-crystalline Materials. Oxford University Press, New York, NY (1971)Google Scholar
  39. 39.
    Fernández-Pacheco, A., De Teresa, J.M., Córdoba, R., Ibarra, M.R.: High-quality magnetic and transport properties of cobalt nanowires grown by focused-electron-beam-induced deposition. J. Phys. D 42, 055005 (2009)CrossRefGoogle Scholar
  40. 40.
    Traving, M., Schindler, G., Engelhardt, M.: Damascene and subtractive processing of narrow W lines: resistivity and size effect. J. Appl. Phys. 100, 094325 (2006)CrossRefGoogle Scholar
  41. 41.
    Stewart, D.K., Stern, L.A., Morgan, J.C.: Focused-ion-beam induced deposition of metal for microcircuit modification. SPIE Proc. 1089, 18 (1989)CrossRefGoogle Scholar
  42. 42.
    Guillamón, I., Suderow, H., Vieira, S., Fernández-Pacheco, A., Sesé, J., Córdoba, R., De Teresa, J.M., Ibarra, M.R.: Nanoscale superconducting properties of amorphous W-based deposits grown with focused-ion-beam. New J. Phys. 10, 093005 (2008)CrossRefGoogle Scholar
  43. 43.
    Prestigiacomo, M., Roussel, L., Houe, A., Sudraud, P., Bedu, F., Tonneau, D., Safarov, V., Dallaporta, H.: Studies of structures elaborated by focused ion beam induced deposition. Microelectron. Eng. 76, 175–181 (2004)CrossRefGoogle Scholar
  44. 44.
    De Teresa, J.M., Fernández-Pacheco, A., Córdoba, R., Sesé, J., Ibarra, M.R., Guillamón, I., Suderow, H., Vieira, S.: Transport properties of superconducting amorphous W-based nanowires fabricated by focused-ion-beam-induced-deposition for applications in Nanotechnology. Mater. Res. Soc. Symp. Proc. 1180, 1180-CC04-09 (2009)Google Scholar
  45. 45.
    Li, W., Fenton, J.C., Wang, Y., McComb, D.W., Warburton, P.A.: Tunability of the superconductivity of tungsten films grown by focused-ion-beam direct writing. J. Appl. Phys. 104, 093913 (2008)CrossRefGoogle Scholar
  46. 46.
    Prestigiacomo, M., Bedu, F., Jandar, F., Tonneau, D., Dallaporta, H., Roussel, L., Sudraud, P.: Purification and crystallization of W wires fabricated by focused ion beam induced deposition. Appl. Phys. Lett. 86, 192112 (2005)CrossRefGoogle Scholar
  47. 47.
    Sadki, E.S., Ooi, S., Hirata, K.: Focused-ion-beam-induced deposition of superconducting thin films. Appl. Phys. Lett. 85, 6206–6208 (2004)CrossRefGoogle Scholar
  48. 48.
    Collver, M.M., Hammond, R.H.: Superconductivity in “amorphous” transition metal alloy films. Phys. Rev. Lett. 30, 92–95 (1972)CrossRefGoogle Scholar
  49. 49.
    Porrati, F., Sachser, R., Huth, M.: The transient electrical conductivity of W-based electron-beam-induced deposits during growth, irradiation and exposure to air. Nanotechnology 20, 195301 (2009)CrossRefGoogle Scholar
  50. 50.
    Guillamón, I., Suderow, H., Fernández-Pacheco, A., Córdoba, R., Sesé, J., De Teresa, J.M., Ibarra, M.R., Vieira, S.: Direct observation of melting in a 2D superconducting vortex lattice. Nat. Phys. 5, 651–655 (2009)CrossRefGoogle Scholar
  51. 51.
    Guillamón, I., Suderow, H., Vieira, S., Córdoba, R., Sesé, J., De Teresa, J.M., Ibarra, M.R.: Direct observation of stress accumulation and relaxation in small superconducting vortex bundles. Phys. Rev. Lett. 106, 077001 (2011)CrossRefGoogle Scholar
  52. 52.
    Córdoba, R., Baturina, T.I., Sesé, J., Mironov, A.Y., De Teresa, J.M., Ibarra, M.R., Nasimov, D.A., Gutakovskii, A.K., Latyshev, A.V., Guillamón, I., Suderow, H., Vieira, S., Baklanov, M.R., Palacios, J.J., Vinokur, V.M.: Magnetic field induced dissipation free state in superconducting nanostructures. Nat. Commun. 4, 1437 (2013)CrossRefGoogle Scholar
  53. 53.
    Martínez-Pérez, M.J., Sesé, J., Córdoba, R., Luis, F., Drong, D., Shurig, T.: Circuit edit of superconducting microcircuits. Supercond. Sci. Tech. 22, 125020 (2009)CrossRefGoogle Scholar
  54. 54.
    Romans, E.J., Osley, E.J., Young, L., Warburton, P.A., Li, W.: Three dimensional nanoscale superconducting quantum interference device pickups coils. Appl. Phys. Lett. 97, 22506 (2010)CrossRefGoogle Scholar
  55. 55.
    Marcano, N., Sangiao, S., Plaza, M., Pérez, L., Fernández-Pacheco, A., Córdoba, R., Sánchez, M.C., Morellón, L., Ibarra, M.R., De Teresa, J.M.: Weak-antilocalization signatures in the magnetotransport properties of individual electrodeposited Bi nanowires. Appl. Phys. Lett. 96, 082110 (2010)CrossRefGoogle Scholar
  56. 56.
    Martínez-Boubeta, C., Balcells, L., Monty, C., Ordejón, P., Martínez, B.: Tunnelling spectroscopy in core/shell structured Fe/MgO nanospheres. Appl. Phys. Lett. 94, 062507 (2009)CrossRefGoogle Scholar
  57. 57.
    Muñoz-Rojas, D., Córdoba, R., Fernández-Pacheco, A., De Teresa, J.M., Sathier, G., Fraxedas, J., Walton, R.I., Casañ-Pastor, N.: High conductivity in hydrothermally grown AgCuO2 single crystals verified using focused-ion-beam-deposited contacts. Inorg. Chem. 49, 10977–10983 (2010)CrossRefGoogle Scholar
  58. 58.
    Muñoz-Rojas, D., Subías, G., Fraxedas, J., Gómez-Romero, P., Casañ-Pastor, N.: Electronic structure of Ag2Cu2O4. Evidence of oxidized silver and copper and internal charge delocalization. J. Phys. Chem. B 109, 6193–6203 (2005)CrossRefGoogle Scholar
  59. 59.
    Sauvage, F., Muñoz-Rojas, D., Poeppelmeier, K.R., Casañ-Pastor, N.: Transport properties and lithium insertion study in the p-type semiconductors Ag2Cu2O4 and Ag2Cu0.5Mn0.5O4. J. Solid State Chem. 182, 374–380 (2009)CrossRefGoogle Scholar
  60. 60.
    Ekin, J.W., Larson, T.M., Bergren, N.F., Nelson, A.J., Swartzlander, A.B., Kazmerski, L.L., Panson, A.J., Blankenship, B.A.: High TC superconductor/noble-metal contacts with surface resistivities in the 10-10 Ωcm2 range. Appl. Phys. Lett. 52, 1819–1821 (1988)CrossRefGoogle Scholar
  61. 61.
    Van Son, P.C., Van Kempen, H., Wyder, P.: New method to study the proximity effect at the normal-metal-superconductor interface. Phys. Rev. Lett. 59, 2226–2228 (1987)CrossRefGoogle Scholar
  62. 62.
    Guéron, S., Pothier, H., Birge, N.O., Esteve, D., Devoret, M.H.: Superconducting proximity effect probed on a mesoscopic length scale. Phys. Rev. Lett. 77, 3025–3028 (1996)CrossRefGoogle Scholar
  63. 63.
    Soulen, R.J., et al.: Measuring the spin polarization of a metal with superconducting point contact. Science 282, 85–88 (1998)CrossRefGoogle Scholar
  64. 64.
    Sangiao, S., Morellón, L., Ibarra, M.R., De Teresa, J.M.: Ferromagnet-superconductor nanocontacts grown by focused electron/ion beam techniques for current-in-plane Andreev reflection measurements. Solid State Commun. 151, 37–41 (2011)CrossRefGoogle Scholar
  65. 65.
    Sangiao, S., De Teresa, J.M., Ibarra, M.R., Guillamón, H., Suderow, H., Vieira, S., Morellón, L.: Andreev reflections under high magnetic fields in ferromagnetic-superconductor nanocontacts. Phys. Rev. B 84, 233402 (2011)CrossRefGoogle Scholar
  66. 66.
    Blonder, G.E., Tinkham, M., Klapwijk, T.M.: Transition from metallic to tunneling regimes in superconducting microconstrictions: excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 25, 4515–4532 (1982)CrossRefGoogle Scholar
  67. 67.
    Kasumov, A., et al.: Proximity effect in a superconductor-metallofullerene-superconductor molecular junction. Phys. Rev. B 72, 033414 (2005)CrossRefGoogle Scholar
  68. 68.
    Shailos, A., Nativel, W., Kasumov, A., Collet, C., Ferrier, M., Guéron, S., Deblock, R., Bouchiat, H.: Proximity effect and multiple Andreev reflections in few-layer graphene. Europhys. Lett. 79, 57008 (2007)CrossRefGoogle Scholar
  69. 69.
    Wang, J., et al.: Proximity-induced superconductivity in nanowires: mini-gap state and differential magnetoresistance oscillations. Phys. Rev. Lett. 102, 247003 (2009)CrossRefGoogle Scholar
  70. 70.
    Wang, J., et al.: Interplay between superconductivity and ferromagnetism in crystalline nanowires. Nat. Phys. 6, 389–394 (2010)CrossRefGoogle Scholar
  71. 71.
    Sangiao, S., et al.: Manuscript in preparationGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales de Aragón (ICMA)Universidad de Zaragoza-CSICZaragozaSpain
  2. 2.Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA)Universidad de ZaragozaZaragozaSpain
  3. 3.Cavendish Laboratory, Department of PhysicsUniversity of CambridgeCambridgeUK

Personalised recommendations