Some Remarks on Avalanches Modelling: An Introduction to Shallow Flows Models

  • Enrique D. Fernández-NietoEmail author
  • Paul Vigneaux
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 3)


The main goal of these notes is to present several depth-averaged models with application in granular avalanches. We begin by recalling the classical Saint-Venant or Shallow Water equations and present some extensions like the Saint-Venant–Exner model for bedload sediment transport. The first part is devoted to the derivation of several avalanche models of Savage–Hutter type, using a depth-averaging procedure of the 3D momentum and mass equations. First, the Savage–Hutter model for aerial avalanches is presented. Two other models for partially fluidized avalanches are then described: one in which the velocities of both the fluid and the solid phases are assumed to be equal, and another one in which both velocities are unknowns of the system. Finally, a Savage–Hutter model for submarine avalanches is derived. The second part is devoted to non-newtonian models, namely viscoplastic fluids. Indeed, a one-phase viscoplastic model can also be used to simulate fluidized avalanches. A brief introduction to Rheology and plasticity is presented in order to explain the Herschel–Bulkley constitutive law. We finally present the derivation of a shallow Herschel–Bulkley model.



The first author would like to thanks the organizers of the Jacques-Louis Lions Spanish-French school for the invitation. The second author would like to thank the Institute of Mathematics of the University of Seville (IMUS) for the financial support to work on the numerical analysis of models for visco-plastic avalanches.


  1. 1.
    Acary-Robert, C., Fernández-Nieto, E., Narbona-Reina, G., Vigneaux, P.: A well-balanced finite volume-augmented Lagrangian method for an integrated Herschel-Bulkley model. J. Sci. Comput. 53, 608–641 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Ancey, C.: Plasticity and geophysical flows: a review. J. Non-Newtonian Fluid Mech. 142, 4–35 (2007)CrossRefzbMATHGoogle Scholar
  3. 3.
    Ancey, C., Cochard, S.: The dam-break problem for Herschel-Bulkley viscoplastic fluids down steep flumes. J. Non-Newtonian Fluid Mech. 158, 18–35 (2009)CrossRefzbMATHGoogle Scholar
  4. 4.
    Anderson, T.B., Jackson, R.: A fluid mechanical description of fluidized beds. Ind. Eng. Chem. Fundam. 6, 527–539 (1967)CrossRefGoogle Scholar
  5. 5.
    Aradian, A., Raphael, E., de Gennes, P.G.: Surface flow of granular materials: a short introduction to some recent models. C. R. Phys. 3, 187–196 (2002)CrossRefGoogle Scholar
  6. 6.
    Aranson, I.S., Tsimring, L.S.: Continuum theory of partially fluidized granular flows. Phys. Rev. E. 65, 061303 (2002)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Audusse, E., Bristeau, M.-O., Perthame, B., Sainte-Marie, J.: A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation. ESAIM Math. Model. Numer. Anal. 45, 169–200 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Balmforth, N.J., Craster, R.V., Rust, A.C., Sassi, R.: Viscoplastic flow over an inclined surface. J. Non-Newtonian Fluid Mech. 139, 103–127 (2006)CrossRefzbMATHGoogle Scholar
  9. 9.
    Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, New Delhi (2000)CrossRefGoogle Scholar
  10. 10.
    Bingham, E.C.: Fluidity and Plasticity. Mc Graw-Hill, New York (1922)Google Scholar
  11. 11.
    Bouchut, F., Mangeney-Castelnau, A., Perthame, B., Vilotte, J.P.: A new model of Saint Venant and Savage-Hutter type for gravity driven shallow flows. C. R. Acad. Sci. Paris Ser. I 336, 531–536 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Bouchut, F., Fernández-Nieto, E.D., Mangeney, A., Lagree, P.Y.: On new erosion models of Savage-Hutter type for avalanches. Acta Mecha. 199, 181–208 (2008)CrossRefzbMATHGoogle Scholar
  13. 13.
    Bresch, D., Desjardins, B.: Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Commun. Math. Phys. 238, 211–223 (2003)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Bresch, D., Fernandez-Nieto, E.D., Ionescu, I.R., Vigneaux, P.: Augmented Lagrangian method and compressible visco-plastic flows: Applications to shallow dense avalanches. In: Advances in Mathematical Fluid Mechanics, pp. 57–89. Birkhauser, Basel (2010)Google Scholar
  15. 15.
    Castro-Díaz, M.J., Fernández-Nieto, E.D., Ferreiro, A.: Sediment transport models in Shallow Water equations and numerical approach by high order finite volume methods. Comput. Fluids 37, 299–316 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Castro-Díaz, M.J., Fernández-Nieto, E.D., Ferreiro, A., Parés, C.: Two-dimensional sediment transport models in shallow water equations: a second order finite volume approach on unstructured meshes. Comput. Meth. App. Mech. Eng. 198, 2520–2538 (2009)CrossRefzbMATHGoogle Scholar
  17. 17.
    Cordier, S., Le, M., Morales de Luna, T.: Bedload transport in shallow water models: why splitting (may) fail, how hyperbolicity (can) help. Adv. Water Resour. 34, 980–989 (2011)Google Scholar
  18. 18.
    Dressler, R.F.: New nonlinear shallow equations with curvature. J. Hydraul. Res. 16, 205–22 (1978)CrossRefGoogle Scholar
  19. 19.
    Duvaut, G., Lions, J.-L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)CrossRefzbMATHGoogle Scholar
  20. 20.
    Einstein, H.A.: The bed load function for sediment transport in open channel flows. Technical Bulletin no. 1026. U.S. Department of Agriculture, Soil Conservation Service, Washington, DC (1950)Google Scholar
  21. 21.
    Fernandez-Nieto, E.D., Bouchut, F., Bresch, D., Castro-Díaz, M.J., Mangeney, A.: A new Savage-Hutter type model for submarine avalanches and generated tsunami. J. Comput. Phys. 227, 7720–7754 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Fernández-Nieto, E.D., Noble, P., Vila, J.P.: Shallow Water equations for Non-Newtonian fluids. J. Non-Newtonian Fluid Mech. 165, 712–732 (2010)CrossRefzbMATHGoogle Scholar
  23. 23.
    Fernández-Nieto, E.D., Koné, E.H., Chacón, T.: A multilayer method for the hydrostatic Navier-Stokes equations: a particular weak solution. J. Sci. Comput. (2013). doi: 10.1007/s10915-013-9802-0Google Scholar
  24. 24.
    Ferrari, S., Saleri, F.: A new two-dimensional shallow water model including pressure effects and slow varying bottom topography. Math. Model. Numer. Anal. 38, 211–234 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Gerbeau, J., Perthame, B.: Derivation of viscous Saint-Venant system for laminar shallow water: numerical validation. Discrete Contin. Dyn. Syst. Ser. B 1, 89–102 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Grass, A.J.: Sediments transport by waves and currents. SERC London Centre for Marine Technology, Report No. FL29 (1981)Google Scholar
  27. 27.
    Gray, J.M.N.T.: Granular flow in partially filled slowly rotating drums. J. Fluid Mech. 441, 1–29 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Heinrich, P., Piatanesi, A., Hébert, H.: Numerical modelling of tsunami generation and propagation from submarine slumps: the 1998 Papua New Guinea event. Geophys. J. Int. 145, 97–11 (2001)CrossRefGoogle Scholar
  29. 29.
    Iverson, R.M., Denlinger, R.P.: Flow of variably fluidized granular masses across three-dimensional terrain. J. Geophys. Res. 106, 537–552 (2001)CrossRefGoogle Scholar
  30. 30.
    Jackson, R.: The Dynamics of Fluidized Particles. Cambridge Monographs on Mechanics. Cambridge University Press, New York (2000)zbMATHGoogle Scholar
  31. 31.
    Khakhar, D.V., Orpe, A.V., Andresén, P., Ottino, J.M.: Surface flow of granular materials: model and experiments in heap formation. J. Fluid Mech. 441, 225–264 (2001)CrossRefGoogle Scholar
  32. 32.
    Macías, J., Fernández-Salas, L.M., González-Vida, J.M., Vázquez, J.T., Castro Días, M.J., Bárcenas, P., del Río, P., Díaz, V., Morales de Luna, T., de la Asunción, M., Parés, C.: Deslizamientos Submarinos y Tsunamis en el Mar de Alborán. Un ejemplo de modelización, vol. 6. Instituto Español de Oceanografía, Spain (2012)Google Scholar
  33. 33.
    Madsen, P.A., Bingham, H.B., Schaffer, H.A.: Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: derivation and analysis. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 459, 1075–104 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Mangeney-Castelnau, A., Bouchut, F., Vilotte, T.P., Lajeneusse, E., Aubertin, A., Pirulli, M.: On the use of Saint-Venant equations to simulate the spreading of a granular mass. J. Geophys. Res. 110, B09103 (2005)Google Scholar
  35. 35.
    Marche, F.: Theoretical and numerical study of Shallow Water models. Application to Nearshore hydrodynamics. Thesis of the University of Bordeaux, France (2005)Google Scholar
  36. 36.
    Meyer-Peter, E., Müller, R.: Formulas for bed-load transport. Report on 2nd Meeting of International Association for Hydraulic Research, 39–64. Stockholm (2005)Google Scholar
  37. 37.
    Morales de Luna, T.: A Saint Venant model for gravity driven shallow water flows with variable density and compressibility effects. Math. Comput. Model. 47, 436–444 (2008)Google Scholar
  38. 38.
    Morales de Luna, T., Castro Díaz, M.J., Parés Madroñal, C., Fernández Nieto, E.D.: On a shallow water model for the simulation of turbidity currents. Commun. Comput. Phys. 6(4), 848–882 (2009)Google Scholar
  39. 39.
    Narbona, G., Zabsonre, J., Fernandez-Nieto, E.D., Bresch, D.: Derivation of a bilayer model for shallow water equations with viscosity: numerical validation. Comput. Model. Eng. Sci. 43, 27–71 (2009)zbMATHGoogle Scholar
  40. 40.
    Nielsen, P.: Coastal bottom boundary layers and sediment transport. In: Advanced Series on Ocean Engineering, vol. 4. World Scientific Publishing, Singapore (1992)Google Scholar
  41. 41.
    Oswald, P.: Rheophysics: The Deformation and Flow of Matter. Cambridge University Press, New York (2009)Google Scholar
  42. 42.
    Pelanti, M., Bouchut, F., Mangeney, A.: A roe-type scheme for two-phase Shallow granular flows with bottom topography. Math. Model. Numer. Anal. 42, 851–885 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Pirulli, M., Bristeau, M.O., Mangeney, A., Scavia, C.: The effect of the earth pressure coefficients on the runout of granular material. Environ. Model. Softw. 22, 1437–1454 (2007)CrossRefGoogle Scholar
  44. 44.
    Pitman, E.B., Le, L.: A two-fluid model for avalanche and debris flows. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 363,1573–1601 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Pudasaini, S., Hutter, K.: Avalanche Dynamics. Springer, New York (2007)Google Scholar
  46. 46.
    Saint-Venant, A.J.C.: Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l’introduction des marées dans leur lit. C. R. Acad. Sci. Paris 73, 147–54 (1871)zbMATHGoogle Scholar
  47. 47.
    Savage, S.B., Hutter, K.: The dynamics of avalanches of granular materials from initiation to run-out. Acta Mech. 86, 201–223 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Tanner, R.I., Walters, K.: Rheology: An Historical Perspective. Elsevier, Amsterdam (1998)zbMATHGoogle Scholar
  49. 49.
    Van Rijn, L.C.: Sediment transport (III): bed forms and alluvial roughness. J. Hydraul. Div. Proc. ASCE 112, 1733–1754 (1984)CrossRefGoogle Scholar
  50. 50.
    Wieland, M., Gray, J.M.N.T., Hutter, K.: Channelized free-surface flow of cohesionless granular avalanches in a chute with shallow lateral curvature. J. Fluid Mech. 392, 73–100 (1999)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Dpto. Matemática Aplicada ISevillaSpain
  2. 2.Unité de Mathématiques Pures et AppliquéesLyonFrance

Personalised recommendations