Advertisement

Integrating Social Network Data for Empowering Collaborative Systems

  • Xuan Truong VuEmail author
  • Marie-Hélène Abel
  • Pierre Morizet-Mahoudeaux
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 245)

Abstract

Over the past years, online social networks with websites such as Facebook, Twitter or LinkedIn, have become a very important part of our everyday life. These websites are increasingly used for creating, publishing and sharing information by users. This creates a huge amount of information a part of which may match the interests of a given group. However the distributed and protected nature of these information make it difficult for retrieving. In this paper, we present a user-centered approach for aggregating social data of members of a group to promote the collaboration and the sharing of knowledge inside collaborative systems. The members will be able to delegate the proposed system to aggregate their different social profiles and to make available the relevant part of information to other members of the group.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abel, F., Gao, Q., Houben, G.-J., Tao, K.: Analyzing Temporal Dynamics in Twitter Profiles for Personalized Recommendations in the Social Web. In: Proceedings of ACM WebSci 2011, 3rd International Conference on Web Science, Koblenz, Germany. ACM (June 2011)Google Scholar
  2. 2.
    Abel, F., Henze, N., Herder, E., Krause, D.: Linkage, aggregation, alignment and enrichment of public user profiles with mypes. In: Proceedings of the 6th International Conference on Semantic Systems, I-SEMANTICS 2010, pp. 11:1–11:8. ACM, New York (2010)Google Scholar
  3. 3.
    Caverlee, J., Liu, L., Webb, S.: The socialtrust framework for trusted social information management: Architecture and algorithms. Inf. Sci. 180(1), 95–112 (2010)CrossRefGoogle Scholar
  4. 4.
    Chiu, P.-Y., Cheung, C.M.K., Lee, M.K.O.: Online social networks: Why do we use facebook? In: Lytras, M.D., Carroll, J.M., Damiani, E., Tennyson, R.D., Avison, D., Vossen, G., De Pablos, P.O. (eds.) WSKS 2008. CCIS, vol. 19, pp. 67–74. Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Deparis, E., Abel, M.-H., Mattioli, J.: Modeling a social collaborative platform with standard ontologies. In: 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems, pp. 167–173 (2011)Google Scholar
  6. 6.
    Gao, Q., Abel, F., Houben, G.-J.: Genius: generic user modeling library for the social semantic web. In: Pan, J.Z., Chen, H., Kim, H.-G., Li, J., Wu, Z., Horrocks, I., Mizoguchi, R., Wu, Z. (eds.) JIST 2011. LNCS, vol. 7185, pp. 160–175. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Horowitz, D., Kamvar, S.D.: The anatomy of a large-scale social search engine. In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 431–440. ACM, New York (2010)CrossRefGoogle Scholar
  8. 8.
    Kim, W., Jeong, O.-R., Lee, S.-W.: On social web sites. Inf. Syst. 35(2), 215–236 (2010)CrossRefGoogle Scholar
  9. 9.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news media? In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 591–600. ACM, New York (2010)CrossRefGoogle Scholar
  10. 10.
    De Meo, P., Nocera, A., Terracina, G., Ursino, D.: Recommendation of similar users, resources and social networks in a social internetworking scenario. Information Sciences 181(7), 1285–1305 (2011)CrossRefGoogle Scholar
  11. 11.
    Naaman, M., Boase, J., Lai, C.-H.: Is it really about me?: message content in social awareness streams. In: Proceedings of the 2010 ACM Conference on Computer Supported Cooperative Work, CSCW 2010, pp. 189–192. ACM, New York (2010)CrossRefGoogle Scholar
  12. 12.
    Orlandi, F., Breslin, J., Passant, A.: Aggregated, interoperable and multi-domain user profiles for the social web. In: Proceedings of the 8th International Conference on Semantic Systems, I-SEMANTICS 2012, pp. 41–48. ACM, New York (2012)Google Scholar
  13. 13.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 851–860. ACM, New York (2010)CrossRefGoogle Scholar
  14. 14.
    Shapira, B., Rokach, L., Freilikhman, S.: Facebook single and cross domain data for recommendation systems. User Modeling and User-Adapted Interaction 23(2-3), 211–247 (2013)CrossRefGoogle Scholar
  15. 15.
    Sorniotti, A., Molva, R.: Secret interest groups (sigs) in social networks with an implementation on facebook. In: Proceedings of the 2010 ACM Symposium on Applied Computing, SAC 2010, pp. 621–628. ACM, New York (2010)Google Scholar
  16. 16.
    Vu, T., Baid, A.: Ask, don’t search: A social help engine for online social network mobile users. In: 2012 35th IEEE Sarnoff Symposium (SARNOFF), pp. 1–5 (2012)Google Scholar
  17. 17.
    Vu, X.T., Morizet-Mahoudeaux, P., Abel, M.-H.: User-centered social network profiles integration. In: Proceedings of the 9th International Conference on Web Information Systems and Technologies, Aachen, Germany (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Xuan Truong Vu
    • 1
    Email author
  • Marie-Hélène Abel
    • 1
  • Pierre Morizet-Mahoudeaux
    • 1
  1. 1.UMR CNRS 7253 HeudiasycUniversité de Technologie de CompiègneCompiègneFrance

Personalised recommendations