Time in Modern Philosophy of Physics—A Survey

  • Holger LyreEmail author


The topos of time ranges among the most puzzling and intriguing topics in our philosophical tradition—a seemingly endless source of deep and unsolved questions: What is time? What is temporal becoming? And how are we to spell out all this without using temporal notions in the first place? These questions are puzzling also in the sense that in our everyday life we seem to be quite familiar with the phenomenon of time. In a famous quote from the Confessions, Saint Augustine points out this discrepancy in the following way: “What is time? If nobody asks me, I know; but if I were desirous to explain it to one that should ask me, plainly I know not.” Nevertheless, 20th century physics has seen much progress not in finally answering these questions, but in providing us with some new perspectives and perhaps also some deeper insights into the nature of time from a scientific point of view. This article is accordingly devoted to give an overview on the several aspects of the notion of time—and in particular the directedness of time—in modern physics. (A similar version has been published online as: Time in philosophy of physics: the central issues. Phys. Phil., ISSN: 1863-7388, 2008, ID: 012,


Time Temporality Endurantism Perdurantism Zeno’s paradox Arrows of time Conventionality of simultaneity Hole argument Parmenides Heraclit McTaggart H-theorem Second law Maxwell’s demon Entropy Information Measurement problem Ignorance interpretation Theory underdetermination Bohmian mechanicstransactional interpretation 


  1. 1.
    Albert, D.: Time and Chance. Harvard University Press, Cambridge (2000) Google Scholar
  2. 2.
    Bell, J.S.: Against ‘measurement’. Phys. World 8, 33–40 (1990) Google Scholar
  3. 3.
    Ben-Menahem, Y., Pitowsky, I. (eds.): Special issue: the conceptual foundations of statistical physics. Stud. Hist. Philos. Mod. Phys. 32(4) (2001) Google Scholar
  4. 4.
    Bennett, C.H.: The thermodynamics of computation—a review. Int. J. Theor. Phys. 21, 905–940 (1982) CrossRefGoogle Scholar
  5. 5.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. Phys. Rev. 85, 166–179, 180 (1952) CrossRefGoogle Scholar
  6. 6.
    Boltzmann, L.: Vorlesungen über Gastheorie. Barth, Leipzig (1896) Google Scholar
  7. 7.
    Brillouin, L.: Science and Information Theory. Academic Press, London (1962) Google Scholar
  8. 8.
    Butterfield, J. (ed.): The Arguments of Time. Oxford University Press, Oxford (1999) Google Scholar
  9. 9.
    Butterfield, J., Earman, J. (eds.): Handbook for the Philosophy of Physics. Elsevier, Amsterdam (2006) Google Scholar
  10. 10.
    Callender, C. (ed.): Time, Reality, and Experience. Cambridge University Press, Cambridge (2002) Google Scholar
  11. 11.
    Carnap, R.: Intellectual autobiography. In: Schilpp, P.A. (ed.) The Philosophy of Rudolf Carnap, Library of Living Philosophers, vol. X. Open Court, La Salle (1963) Google Scholar
  12. 12.
    Cramer, J.G.: The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 58, 647–688 (1986) CrossRefGoogle Scholar
  13. 13.
    Dürr, D., Goldstein, S., Zanghi, N.: Quantum equilibrium and the origin of absolute uncertainty. J. Stat. Phys. 67, 843–907 (1992) CrossRefGoogle Scholar
  14. 14.
    Earman, J.: World Enough and Space-Time. MIT Press, Cambridge (1989) Google Scholar
  15. 15.
    Earman, J.: Bangs, Crunches, Whimpers, and Shrieks. Oxford University Press, New York (1995) Google Scholar
  16. 16.
    Earman, J.: Gauge matters. PSA 2000 conference lecture, to appear in Philos. Sci. (2000) Google Scholar
  17. 17.
    Earman, J.: Thoroughly modern McTaggart: or what McTaggart would have said if he had learned the general theory of relativity. Philos. Impr. 2(3) (2002).
  18. 18.
    Earman, J., Norton, J.: What price spacetime substantivalism? The hole story. Br. J. Philos. Sci. 83, 515–525 (1987) CrossRefGoogle Scholar
  19. 19.
    Earman, J., Norton, J.: Exorcist XIV: The wrath of Maxwell’s demon. Part I. From Maxwell to Szilard. Stud. Hist. Philos. Mod. Phys. 29, 435–471 (1998) CrossRefGoogle Scholar
  20. 20.
    Earman, J., Norton, J.: Exorcist XIV: The wrath of Maxwell’s Demon. Part II. From Szilard to Landauer and Beyond. Stud. Hist. Philos. Mod. Phys. 30, 1–40 (1999) CrossRefGoogle Scholar
  21. 21.
    Einstein, A.: Relativity: The Special and General Theory. Holt, New York (1920) Google Scholar
  22. 22.
    Englert, B.-G., Scully, M.O., Süssmann, G., Walther, H.: Surrealistic Bohm trajectories. Z. Naturforsch. 47a, 1175–1186 (1992). Comment: Dürr et al.: Z. Naturforsch. 48a, 1261 (1993); Reply to Comment: Englert et al.: Z. Naturforsch. 48a, 1263 (1993) Google Scholar
  23. 23.
    Finkelstein, D.: Quantum Relativity: A Synthesis of the Ideas of Einstein and Heisenberg. Springer, New York (1996) CrossRefGoogle Scholar
  24. 24.
    Frisch, M.: (Dis-)solving the puzzle of the arrow of radiation. Br. J. Philos. Sci. 51, 381–410 (2000) CrossRefGoogle Scholar
  25. 25.
    Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.-O., Zeh, H.D.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (1996) CrossRefGoogle Scholar
  26. 26.
    Grünbaum, A.: Philosophical Problems of Space and Time. Knopf, New York (1963). Second, enlarged edition, Reidel, Dordrecht (1973) Google Scholar
  27. 27.
    Grünbaum, A.: Modern Science and Zeno’s Paradoxes. Wesleyan University Press, Middletown (1967) Google Scholar
  28. 28.
    Guttmann, Y.M.: The Concept of Probability in Statistical Physics. Cambridge University Press, Cambridge (1999) CrossRefGoogle Scholar
  29. 29.
    Horwich, P.: Asymmetries in Time. MIT Press, Cambridge (1987) Google Scholar
  30. 30.
    Huggett, N. (ed.): Space from Zeno to Einstein: Classic Readings with a Contemporary Commentary. MIT Press, Cambridge (1999) Google Scholar
  31. 31.
    Itano, W.M., Heinzen, D.J., Bollinger, J.J., Wineland, D.J.: Quantum Zeno effect. Phys. Rev. A 41(5), 2295–2300 (1990) CrossRefGoogle Scholar
  32. 32.
    Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957) CrossRefGoogle Scholar
  33. 33.
    Jaynes, E.T.: Information theory and statistical mechanics II. Phys. Rev. 108, 171 (1957) CrossRefGoogle Scholar
  34. 34.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961) CrossRefGoogle Scholar
  35. 35.
    Leff, H.S., Rex, A.F. (eds.): Maxwell’s Demon: Entropy, Information, Computing. Princeton University Press, Princeton (1990) Google Scholar
  36. 36.
    Malament, D.: Causal theories of time and the conventionality of simultaneity. Noûs 11, 293–300 (1977) CrossRefGoogle Scholar
  37. 37.
    Maxwell, J.C.: Theory of Heat. Longmans, London (1871) Google Scholar
  38. 38.
    McTaggart, J.M.E.: The unreality of time. Mind 17(68), 457–474 (1908) CrossRefGoogle Scholar
  39. 39.
    Misra, B., Sudarshan, E.C.G.: Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756 (1977) CrossRefGoogle Scholar
  40. 40.
    Mittelstaedt, P.: The Interpretation of Quantum Mechanics and the Measurement Process. Cambridge University Press, Cambridge (1998) Google Scholar
  41. 41.
    Norton, J.D.: General covariance and the foundations of general relativity: eight decades of dispute. Rep. Prog. Phys. 56, 791–858 (1993) CrossRefGoogle Scholar
  42. 42.
    Pais, A.: ‘Subtle is the Lord…’: The Science and the Life of Albert Einstein. Oxford University Press, Oxford (1982) Google Scholar
  43. 43.
    Penrose, R.: Singularities and time-asymmetry. In: Hawking, S.W., Israel, W. (eds.) General Relativity: An Einstein Centenary Survey. Cambridge University Press, Cambridge (1979) Google Scholar
  44. 44.
    Penrose, R.: The Emperor’s New Mind. Oxford University Press, New York (1989) Google Scholar
  45. 45.
    Price, H.: Time’s Arrow and Archimedes’ Point. Oxford University Press, New York (1996) Google Scholar
  46. 46.
    Reichenbach, H.: Philosophie der Raum-Zeit-Lehre. de Gruyter, Berlin (1927). Engl. transl.: Philosophy of Space and Time. Dover, New York (1957) Google Scholar
  47. 47.
    Ross, W.D.: Aristotle’s Physics. Clarendon Press, Oxford (1936) Google Scholar
  48. 48.
    Rothstein, J.: Informational generalization of entropy in physics. In: Bastin, T. (ed.): Quantum Theory and Beyond. Cambridge University Press, Cambridge (1971) Google Scholar
  49. 49.
    Rovelli, C.: The century of the incomplete revolution: Searching for general relativistic quantum field theory. J. Math. Phys. 41(6), 3776–3800 (2000) CrossRefGoogle Scholar
  50. 50.
    Salmon, W.C. (ed.): Zeno’s Paradoxes. Bobbs-Merrill, Indianapolis (1970). Repr., Hackett, Indianapolis (2001) Google Scholar
  51. 51.
    Sarkar, S., Stachel, J.: Did Malament prove the non-conventionality of simultaneity in the special theory of relativity? Philos. Sci. 66, 208–220 (1999) CrossRefGoogle Scholar
  52. 52.
    Savitt, S.F.: Time’s Arrows Today. Cambridge University Press, Cambridge (1995) CrossRefGoogle Scholar
  53. 53.
    Schulman, L.S.: Time’s Arrows and Quantum Measurement. Cambridge University Press, Cambridge (1997) CrossRefGoogle Scholar
  54. 54.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–656 (1948) CrossRefGoogle Scholar
  55. 55.
    Sklar, L.: Space, Time, and Spacetime. University of California Press, Berkeley (1974) Google Scholar
  56. 56.
    Sklar, L.: Physics and Chance. Cambridge University Press, Cambridge (1993) CrossRefGoogle Scholar
  57. 57.
    Stachel, J.: Einstein’s search for general covariance, 1912–1915. In: Howard, D., Stachel, J. (eds.) Einstein and the History of General Relativity. Einstein Studies, vol. 1. Birkhäuser, Boston (1989) Google Scholar
  58. 58.
    Szilard, L.: Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Z. Phys. 53, 840–856 (1929) CrossRefGoogle Scholar
  59. 59.
    Uffink, J.: Bluff your way through the second law of thermodynamics. Stud. Hist. Philos. Mod. Phys. 32(3), 305–394 (2001) CrossRefGoogle Scholar
  60. 60.
    Uffink, J.: Issues in the foundations of classical statistical physics. In: Butterfield, J., Earman, J. (eds.): Handbook for the Philosophy of Physics. Elsevier, Amsterdam (2006) Google Scholar
  61. 61.
    Weizsäcker, C.F.v: Die Einheit der Natur. Hanser, München (1971). Engl. transl.: The Unity of Nature. Farrar, Straus and Giroux, New York (1980) Google Scholar
  62. 62.
    Wheeler, J.A., Feynman, R.P.: Interaction with the absorber as the mechanism of radiation. Rev. Mod. Phys. 17, 157–181 (1945) CrossRefGoogle Scholar
  63. 63.
    Zeh, H.-D.: The Physical Basis of the Direction of Time. Springer, Heidelberg (1989). Fourth edition (2001) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Philosophy DepartmentUniversity of MagdeburgMagdeburgGermany

Personalised recommendations