Generating Different Story Tellings from Semantic Representations of Narrative

  • Elena Rishes
  • Stephanie M. Lukin
  • David K. Elson
  • Marilyn A. Walker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8230)


In order to tell stories in different voices for different audiences, interactive story systems require: (1) a semantic representation of story structure, and (2) the ability to automatically generate story and dialogue from this semantic representation using some form of Natural Language Generation (nlg). However, there has been limited research on methods for linking story structures to narrative descriptions of scenes and story events. In this paper we present an automatic method for converting from Scheherazade’s story intention graph, a semantic representation, to the input required by the personage nlg engine. Using 36 Aesop Fables distributed in DramaBank, a collection of story encodings, we train translation rules on one story and then test these rules by generating text for the remaining 35. The results are measured in terms of the string similarity metrics Levenshtein Distance and BLEU score. The results show that we can generate the 35 stories with correct content: the test set stories on average are close to the output of the Scheherazade realizer, which was customized to this semantic representation. We provide some examples of story variations generated by personage. In future work, we will experiment with measuring the quality of the same stories generated in different voices, and with techniques for making storytelling interactive.


Semantic Narrative Representation Natural Language Generation Story Variation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thorne, A.: The press of personality: A study of conversations between introverts and extraverts. Journal of Personality and Social Psychology 53, 718 (1987)CrossRefGoogle Scholar
  2. 2.
    Thorne, A., McLean, K.C.: Telling traumatic events in adolescence: A study of master narrative positioning. Connecting Culture and Memory: The Development of an Autobiographical Self, 169–185 (2003)Google Scholar
  3. 3.
    Callaway, C., Lester, J.: Narrative prose generation. Artificial Intelligence 139, 213–252 (2002)CrossRefGoogle Scholar
  4. 4.
    Turner, S.: The creative process: A computer model of storytelling and creativity. Lawrence Erlbaum (1994)Google Scholar
  5. 5.
    Riedl, M., Young, R.M.: An intent-driven planner for multi-agent story generation. In: Proc. of the 3rd International Conference on Autonomous Agents and Multi Agent Systems (2004)Google Scholar
  6. 6.
    Cavazza, M., Charles, F.: Dialogue generation in character-based interactive storytelling. In: AAAI First Annual Artificial Intelligence and Interactive Digital Entertainment Conference, Marina del Rey, California, USA (2005)Google Scholar
  7. 7.
    Rowe, J.P., Ha, E.Y., Lester, J.C.: Archetype-Driven Character Dialogue Generation for Interactive Narrative. In: Prendinger, H., Lester, J.C., Ishizuka, M. (eds.) IVA 2008. LNCS (LNAI), vol. 5208, pp. 45–58. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Lin, G.I., Walker, M.A.: All the world’s a stage: Learning character models from film. In: Proceedings of the Seventh AI and Interactive Digital Entertainment Conference, AIIDE 2011. AAAI (2011)Google Scholar
  9. 9.
    Walker, M.A., Grant, R., Sawyer, J., Lin, G.I., Wardrip-Fruin, N., Buell, M.: Perceived or not perceived: Film character models for expressive NLG. In: Si, M., Thue, D., André, E., Lester, J., Tanenbaum, J., Zammitto, V. (eds.) ICIDS 2011. LNCS, vol. 7069, pp. 109–121. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Montfort, N.: Generating narrative variation in interactive fiction. PhD thesis, University of Pennsylvania (2007)Google Scholar
  11. 11.
    McIntyre, N., Lapata, M.: Learning to tell tales: A data-driven approach to story generation. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, Singapore, pp. 217–225 (2009)Google Scholar
  12. 12.
    Elhadad, M.: Using Argumentation to Control Lexical Choice: a Functional Unification Implementation. PhD thesis, Columbia University (1992)Google Scholar
  13. 13.
    Elson, D.K., McKeown, K.: A tool for deep semantic encoding of narrative texts. In: Proceedings of the ACL-IJCNLP 2009 Software Demonstrations, pp. 9–12. Association for Computational Linguistics (2009)Google Scholar
  14. 14.
    Elson, D.K.: Detecting story analogies from annotations of time, action and agency. In: Proceedings of the LREC 2012 Workshop on Computational Models of Narrative, Istanbul, Turkey (2012)Google Scholar
  15. 15.
    Mairesse, F., Walker, M.A.: Controlling user perceptions of linguistic style: Trainable generation of personality traits. Computational Linguistics (2011)Google Scholar
  16. 16.
    Bouayad-Agha, N., Scott, D., Power, R.: Integrating content and style in documents: a case study of patient information leaflets. Information Design Journal 9, 161–176 (2000)CrossRefGoogle Scholar
  17. 17.
    Kipper, K., Korhonen, A., Ryant, N., Palmer, M.: Extensive classifications of english verbs. In: Proceedings of the Third International Conference on Language Resources and Evaluation (2006)Google Scholar
  18. 18.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press (1998)Google Scholar
  19. 19.
    Lavoie, B., Rambow, O.: A fast and portable realizer for text generation systems. In: Proceedings of the Third Conference on Applied Natural Language Processing, ANLP 1997, pp. 265–268 (1997)Google Scholar
  20. 20.
    Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, ACL 2002, pp. 311–318. Association for Computational Linguistics, Stroudsburg (2002)Google Scholar
  21. 21.
    Elson, D.K., McKeown, K.: Tense and aspect assignment in narrative discourse. In: Proceedings of the Sixth International Conference on Natural Language Generation, INLG 2010. Citeseer (2010)Google Scholar
  22. 22.
    Wiebe, J.M.: Identifying subjective characters in narrative. In: Proceedings of the 13th Conference on Computational Linguistics, COLING 1990, vol. 2, pp. 401–406. Association for Computational Linguistics, Stroudsburg (1990)Google Scholar
  23. 23.
    Pustejovsky, J., Castao, J., Ingria, R., Saur, R., Gaizauskas, R., Setzer, A., Katz, G.: Timeml: Robust specification of event and temporal expressions in text. In: Fifth International Workshop on Computational Semantics, IWCS-5 (2003)Google Scholar
  24. 24.
    Palmer, M., Gildea, D., Kingsbury, P.: The proposition bank: An annotated corpus of semantic roles. Comput. Linguist. 31, 71–106 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Elena Rishes
    • 1
  • Stephanie M. Lukin
    • 1
  • David K. Elson
    • 2
  • Marilyn A. Walker
    • 1
  1. 1.Natural Language and Dialogue Systems LabUniversity of California Santa CruzSanta CruzUSA
  2. 2.Columbia UniversityNew York CityUSA

Personalised recommendations