Sex Differences in the Human Connectome

  • Vivek Kulkarni
  • Jagat Sastry Pudipeddi
  • Leman Akoglu
  • Joshua T. Vogelstein
  • R. Jacob Vogelstein
  • Sephira Ryman
  • Rex E. Jung
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8211)


The human brain and the neuronal networks comprising it are of immense interest to the scientific community. In this work, we focus on the structural connectivity of human brains, investigating sex differences across male and female connectomes (brain-graphs) for the knowledge discovery problem “Which brain regions exert differences in connectivity across the two sexes?”. One of our main findings discloses the statistical difference at the pars orbitalis of the connectome between sexes, which has been shown to function in language production. Moreover, we use these discriminative regions for the related learning problem “Can we classify a given human connectome to belong to one of the sexes just by analyzing its connectivity structure?” . We show that we can learn decision tree as well as support vector machine classification models for this task. We show that our models achieve up to 79% prediction accuracy with only a handful of brain regions as discriminating factors. Importantly, our results are consistent across two data sets, collected at two different centers, with two different scanning sequences, and two different age groups (children and elderly). This is highly suggestive that we have discovered scientifically meaningful sex differences.


human connectome network science network connectivity graph measures sex classification pars orbitalis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sporns, O.: Networks of the Brain. The MIT Press (2010)Google Scholar
  2. 2.
    Barabási, A.L.: Linked: the new science of networks. Perseus Pub. (2002)Google Scholar
  3. 3.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: ACM SIGKDD (2005)Google Scholar
  4. 4.
    McGlohon, M., Akoglu, L., Faloutsos, C.: Weighted graphs and disconnected components: patterns and a generator. In: ACM SIGKDD (2008)Google Scholar
  5. 5.
    Human Brain Project - Home,
  6. 6.
    Human Connectome Project - Home,
  7. 7.
    Buckner, R.L.: The Brain Genomics Superstruct ProjectGoogle Scholar
  8. 8.
    Mennes, M., Biswal, B.B., Castellanos, X.F., Milham, M.P.: Making data sharing work: The FCP/INDI experience. NeuroImage Null (2012)Google Scholar
  9. 9.
    Sporns, O., Zwi, J.D.: The small world of the cerebral cortex. Neuroinformatics 2, 145–162 (2004)CrossRefGoogle Scholar
  10. 10.
    van den Heuvel, M.P., Sporns, O.: Rich-club organization of the human connectome. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 31, 15775–15786 (2011)CrossRefGoogle Scholar
  11. 11.
    Vogelstein, J.T., Gray, W.R., Vogelstein, R.J., Priebe, C.E.: Graph classification using signal subgraphs: Applications in statistical connectomics. IEEE Transactions on Pattern Analysis and Machine Intelligence 99, 1 (2012)Google Scholar
  12. 12.
    Duarte-Carvajalino, J.M., Jahanshad, N., Lenglet, C., McMahon, K., de Zubicaray, G.I., Martin, N.G., Wright, M.J., Thompson, P.M., Sapiro, G.: Hierarchical topological network analysis of anatomical human brain connectivity and differences related to sex and kinship. NeuroImage 59, 3784–3804 (2012)CrossRefGoogle Scholar
  13. 13.
    Lv, B., Li, J., He, H., Li, M., Zhao, M., Ai, L., Yan, F., Xian, J., Wang, Z.: Gender consistency and difference in healthy adults revealed by cortical thickness. NeuroImage (2010)Google Scholar
  14. 14.
    Haier, R.J., Jung, R.E., Yeo, R.A., Head, K., Alkire, M.T.: The neuroanatomy of general intelligence: sex matters. NeuroImage 25, 320–327 (2005)CrossRefGoogle Scholar
  15. 15.
    Menzler, K., Belke, M., Wehrmann, E., Krakow, K., Lengler, U., Jansen, A., Hamer, H.M., Oertel, W.H., Rosenow, F., Knake, S.: Men and women are different: Diffusion Tensor Imaging reveals sexual dimorphism in the microstructure of the thalamus, corpus callosum and cingulum. NeuroImage (2010)Google Scholar
  16. 16.
    Gong, G., He, Y., Evans, A.C.: Brain Connectivity: Gender Makes a Difference. The Neuroscientist: a Review Journal Bringing Neurobiology, Neurology and Psychiatry (2011)Google Scholar
  17. 17.
    Gray, W.R., Bogovic, J.A., Vogelstein, J.T., Landman, B.A., Prince, J.L., Vogelstein, R.J.: Magnetic resonance connectome automated pipeline: an overview. IEEE Pulse 3, 42–48 (2010)CrossRefGoogle Scholar
  18. 18.
    Mori, S., van Zijl, P.C.M.: Fiber tracking: principles and strategies - a technical review. NMR in Biomedicine 15, 468–480 (2002)CrossRefGoogle Scholar
  19. 19.
    Desikan, R.S., Se, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J., Ségonne, F.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968–980 (2006)CrossRefGoogle Scholar
  20. 20.
    Leek, J.T., Scharpf, R.B., Bravo, H.C., Simcha, D., Langmead, B., Johnson, W.E., Geman, D., Baggerly, K., Irizarry, R.A.: Tackling the widespread and critical impact of batch effects in high-throughput data. Nature reviews. Genetics 11, 733–739 (2010)CrossRefGoogle Scholar
  21. 21.
    Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 52 (2010)Google Scholar
  22. 22.
    Song, J., Desphande, A.S., Meier, T.B., Tudorascu, D.L., Vergun, S., Nair, V.A., Biswal, B.B., Meyerand, M.E., Birn, R.M., Bellec, P., Prabhakaran, V.: Age-Related Differences in Test-Retest Reliability in Resting-State Brain Functional Connectivity. PLoS One 7, e49847 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Vivek Kulkarni
    • 1
  • Jagat Sastry Pudipeddi
    • 1
  • Leman Akoglu
    • 1
  • Joshua T. Vogelstein
    • 2
  • R. Jacob Vogelstein
    • 3
  • Sephira Ryman
    • 4
  • Rex E. Jung
    • 4
  1. 1.Department of Computer ScienceStony Brook UniversityUSA
  2. 2.Department of Statistical Science & Duke Institute for Brain Sciences & Child Mind InstituteDuke UniversityUSA
  3. 3.Applied Physics LaboratoryJohns Hopkins UniversityUSA
  4. 4.Department of NeurosurgeryUniversity of New MexicoUSA

Personalised recommendations