Educational Data Mining pp 29-64 | Cite as
A Survey on Pre-Processing Educational Data
Abstract
Data pre-processing is the first step in any data mining process, being one of the most important but less studied tasks in educational data mining research. Pre-processing allows transforming the available raw educational data into a suitable format ready to be used by a data mining algorithm for solving a specific educational problem. However, most of the authors rarely describe this important step or only provide a few works focused on the pre-processing of data. In order to solve the lack of specific references about this topic, this paper specifically surveys the task of preparing educational data. Firstly, it describes different types of educational environments and the data they provide. Then, it shows the main tasks and issues in the pre-processing of educational data, Moodle data being mainly used in the examples. Next, it describes some general and specific pre-processing tools and finally, some conclusions and future research lines are outlined.
Keywords
Educational data mining process Data pre-processing Data preparation Data transformationAbbreviations
- AIHS
Adaptive and intelligent hypermedia system
- ARFF
Attribute-relation File Format
- CBE
Computer-based education
- CSV
Comma-separated values
- DM
Data mining
- EDM
Educational data mining
- HTML
Hypertext Markup language
- ID
Identifier
- IP
Internet Protocol
- ITS
Intelligent tutoring system
- KDD
Knowledge discovery in databases
- LMS
Learning management system
- MCQ
Multiple choice question
- MIS
Management information system
- MOOC
Massive Open Online Course
- OLAP
Online Analytical Processing
- SQL
Structured Query Language
- WUM
Web Usage Mining
- WWW
World Wide Web
- XML
Extensible Markup Language
Notes
Acknowledgments
This research is supported by projects of the Regional Government of Andalucía and the Ministry of Science and Technology, P08-TIC-3720 and TIN-2011-22408, respectively, and FEDER funds.
References
- 1.Romero, C., Ventura, S.: Data mining in education. WIREs Data Min. Knowl. Disc. 1(3), 12–27 (2013)CrossRefGoogle Scholar
- 2.Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco (2006)Google Scholar
- 3.Miksovsky, P., Matousek, K., Kouba, Z.: Data Pre-processing support for data mining. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 208–212, Hammamet, Tunisia (2002)Google Scholar
- 4.Pyle, D.: Data Preparation for Data Mining. Morgan Kaufmann, San Francisco (1999)Google Scholar
- 5.Gonçalves, P.M., Barros, R.S.M., Vieria, D.C.L: On the use of data mining tools for data preparation in classification problems. In: 11th International Conference on Computer and Information Science, pp. 173–178, IEEE, Washington (2012)Google Scholar
- 6.Bohanec, M., Moyle, S., Wettschereck, D., Miksovsk, P.: A software architecture for data pre-processing using data mining and decision support models. In: ECML/PKDD’01 Workshop on Integrating Aspects of Data Mining, Decision Support and Meta-Learning, pp. 13–24 (2001)Google Scholar
- 7.Sael, N., Abdelaziz, A., Behja, H.: Investigating and advanced approach to data pre-processing in Moodle platform. Int. Rev. Comput. Softw. 7(3), 977–982 (2012)Google Scholar
- 8.Marquardt, C.G., Becker, K., Ruiz, D.D.: A Pre-processing tool for web usage mining in the distance education Domain. In: International Database Engineering and Applications Symposium, pp. 78–87. IEEE Computer Society, Washington (2004)Google Scholar
- 9.Wettschereck, D.: Educational data pre-processing. In: ECML’02 Discovery Challenge Workshop, pp. 1–6. University of Helsinki, Helsinki (2002)Google Scholar
- 10.Simon, J.: Data preprocessing using a priori knowledge. In: D’Mello, S.K., Calvo, R.A., Olney, A. (eds.) 6th International Conference on Educational Data Mining, pp. 352–353. International Educational Data Mining Society, Memphis (2013)Google Scholar
- 11.Rice, W.H.: Moodle E-learning Course Development. A Complete Guide to Successful Learning Using Moodle. Packt publishing, Birmingham (2006)Google Scholar
- 12.Ma, Y., Liu, B., Wong, C., Yu, P., Lee, S.: Targeting the right students using data mining. In: Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data mining, pp. 457–464. ACM, New York (2000)Google Scholar
- 13.Silva, D., Vieira, M.: Using data warehouse and data mining resources for ongoing assessment in distance learning. In: IEEE International Conference on Advanced Learning Technologies, pp. 40–45. IEEE Computer Society, Kazan (2002)Google Scholar
- 14.Clow, D.: MOOCs and the funnel of participation. In: Suthers, D., Verbert, K., Duval, E., Ochoa, X. (eds.) International Conference on Learning Analytics and Knowledge, pp. 185–189. ACM New York, NY (2013)Google Scholar
- 15.Anderson, J., Corbett, A., Koedinger, K.: Cognitive tutors. J. Learn. Sci. 4(2), 67–207 (1995)CrossRefGoogle Scholar
- 16.Mostow, J., Beck, J.: Some useful tactics to modify, map and mine data from intelligent tutors. J. Nat. Lang. Eng. 12(2), 95–208 (2006)Google Scholar
- 17.Brusilovsky, P., Peylo, C.: Adaptive and intelligent web-based educational systems. Int. J. Artif. Intell. Educ. 13(2–4), 159–172 (2003)Google Scholar
- 18.Merceron, A., Yacef, K.: Mining student data captured from a web-based tutoring tool: initial exploration and results. J. Interact. Learn. Res. 15(4), 319–346 (2004)Google Scholar
- 19.Brusilovsky, P., Miller, P.: Web-based testing for distance education. In: De Bra, P., Leggett, J. (eds.) WebNet’99, World Conference of the WWW and Internet, pp. 149–154. AACE, Honolulu (1999)Google Scholar
- 20.Hanna, M.: Data mining in the e-learning domain. Campus-Wide Inf. Syst. 21(1), 29–34 (2004)MathSciNetCrossRefGoogle Scholar
- 21.Romero, C., Ventura, S., Salcines, E.: Data mining in course management systems: moodle case study and tutorial. Comput. Educ. 51(1), 368–384 (2008)CrossRefGoogle Scholar
- 22.Agrawal, R., Srikant, R.: Mining sequential patterns. In: Eleventh International Conference on Data Engineering, pp. 3–4. IEEE, Washington (1995)Google Scholar
- 23.Romero, C., Ventura, S., Zafra, A., De Bra, P.: Applying web usage mining for personalizing hyperlinks in web-based adaptive educational systems. Comput. Educ. 53(3), 828–840 (2009)CrossRefGoogle Scholar
- 24.Feldman, R., Sanger, J.: The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
- 25.Dringus, L.P., Ellis, T.: Using data mining as a strategy for assessing asynchronous discussion forums. Comput. Educ. J. 45(1), 141–160 (2005)CrossRefGoogle Scholar
- 26.Petrushin, V., Khan, L. (eds.): Multimedia Data Mining and Knowledge Discovery. Springer, London (2007)MATHGoogle Scholar
- 27.Bari, M., Lavoie, B.: Predicting interactive properties by mining educational multimedia presentations. In: International Conference on Information and Communications Technology, pp. 231–234. Bangladesh University of Engineering and Technology, Dhaka (2007)Google Scholar
- 28.Srivastava, J., Cooley, R., Deshpande, M., Tan, P.: Web usage mining: discovery and applications of usage patterns from web data. SIGKDD Explor. 1(2), 12–23 (2000)CrossRefGoogle Scholar
- 29.Romero, C., Ventura, S.: Educational data mining: a survey from 1995 to 2005. Expert Syst. Appl. 33(1), 135–146 (2007)CrossRefGoogle Scholar
- 30.Vranic, M., Pintar, D., Skocir, Z.: The use of data mining in education environment. In: 9th International Conference on Telecommunications, pp. 243–250. IEEE, Zagreb (2007)Google Scholar
- 31.Gibert, K., Izquierdo, J., Holmes, G., Athanasiadis, I., Comas, J., Sanchez, M.: On the role of pre and post processing in environmental data mining. In: Sánchez-Marré, M., Béjar, J., Comas, J., Rizzoli, A. E., Guariso, G. (eds.) iEMSs Fourth Biennial Meeting: International Congress on Environmental Modelling and Software (iEMSs 2008), pp. 1937–1958. International Environmental Modelling and Software Society, Barcelona (2008)Google Scholar
- 32.Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2005)Google Scholar
- 33.Zhu, F., Ip, H., Fok, A., Cao, J.: PeRES: A Personalized Recommendation Education System Based on Multi-Agents & SCORM. In: Leung, H., Li, F., Lau, R., Li, Q. (eds.) Advances in Web Based Learning—ICWL 2007. LNCS, vol. 4823, pp. 31–42. Springer, Heidelberg (2007)Google Scholar
- 34.Avouris, N., Komis, V., Fiotakis, G., Margaritis, M., Voyiatzaki, E.: Why logging of fingertip actions is not enough for analysis of learning activities. In: Workshop on Usage Analysis in Learning Systems, pp. 1–8. AIED Conference, Amsterdam (2005)Google Scholar
- 35.Chanchary, F.H., Haque, I., Khalid, M.S.: Web usage mining to evaluate the transfer of learning in a web-based learning environment. In: International Workshop on Knowledge Discovery and Data Mining, pp. 249–253. IEEE, Washington (2008)Google Scholar
- 36.Spacco, J., Winters, T., Payne, T.: Inferring use cases from unit testing. In: AAAI Workshop on Educational Data Mining, pp. 1–7, AAAI Press, New York (2006)Google Scholar
- 37.Zhang, L, Liu, X., Liu, X.: Personalized instructing recommendation system based on web mining. In: International Conference for Young Computer Scientists, pp. 2517–2521. IEEE Computer Society Washington (2008)Google Scholar
- 38.Barnes, T.: The Q-matrix method: mining student response data for knowledge. In: AAAI-2005 Workshop on Educational Data Mining, pp. 1–8, AAAI Press, Pittsburgh (2005)Google Scholar
- 39.Chen, C., Chen, M., Li, Y.: Mining key formative assessment rules based on learner profiles for web-based learning systems. In: Spector, J.M., Sampson D.G., Okamoto, T., Kinshuk, Cerri, S.A., Ueno, M., Kashihara, A. (eds.) IEEE International Conference on Advanced Learning Technologies, pp. 1–5. IEEE Computer Society, Los Alamitos (2007)Google Scholar
- 40.Wang, F.H.: A fuzzy neural network for item sequencing in personalized cognitive scaffolding with adaptive formative assessment. Expert Syst. Appl. J. 27(1), 11–25 (2004)CrossRefGoogle Scholar
- 41.Markham, S., Ceddia, J., Sheard, J., Burvill, C., Weir, J., Field, B.: Applying agent technology to evaluation tasks in e-learning environments. In: International Conference of the Exploring Educational Technologies, pp. 1–7. Monash University, Melbourne (2003)Google Scholar
- 42.Medvedeva, O., Chavan, G., Crowley, R.: A data collection framework for capturing its data based on an agent communication standard. In: 20th Annual Meeting of the American Association for Artificial Intelligence, pp. 23–30, AAAI, Pittsburgh (2005)Google Scholar
- 43.Shen, R., Han, P., Yang, F., Yang, Q., Huang, J.: Data mining and case-based reasoning for distance learning. J. Distance Educ. Technol. 1(3), 46–58 (2003)CrossRefGoogle Scholar
- 44.Lenzerini, M.: Data integration: a theoretical perspective. In: International Conference on ACM SIGMOD/PODS, pp. 233–246. ACM, New York (2002)Google Scholar
- 45.Ingram, A.: Using web server logs in evaluating instructional web sites. J. Educ. Technol. Syst. 28(2), 137–157 (1999)CrossRefGoogle Scholar
- 46.Peled, A., Rashty, D.: Logging for success: advancing the use of WWW logs to improve computer mediated distance learning. J. Educ. Comput. Res. 21(4), 413–431 (1999)Google Scholar
- 47.Talavera, L., Gaudioso, E.: Mining student data to characterize similar behavior groups in unstructured collaboration spaces. In: Workshop on Artificial Intelligence in CSCL, pp. 17–23. Valencia (2004)Google Scholar
- 48.Romero, C., Ventura, S., Bra, P.D.: Knowledge discovery with genetic programming for providing feedback to courseware author. User modeling and user-adapted interaction. J. Personalization Res. 14(5), 425–464 (2004)Google Scholar
- 49.Mostow, J., Beck, J.E.: Why, what, and how to log? Lessons from LISTEN. In: Barnes, T., Desmarais, M., Romero, R., Ventura, S. (eds.) 2nd International Conference on Educational Data Mining, pp. 269–278. International Educational Data Mining Society, Cordoba (2009)Google Scholar
- 50.Binli, S.: Research on data-preprocessing for construction of university information systems. In: International Conference on Computer Application and System Modeling, pp. 459–462. IEEE, Taiyuan (2010)Google Scholar
- 51.Dierenfeld, H., Merceron, A.: Learning analytics with excel pivot tables. In: Moodle Research Conference, pp. 115–121. University of Piraeus, Heraklion (2012)Google Scholar
- 52.Solodovnikova, D., Niedrite, L.: Using data warehouse resources for assessment of e-earning influence on university processes. In: Eder, J., Haav, H.M., Kalja, A., Penjam, J. (eds.) 9th East European Conference, ADBIS 2005. Advances in Databases and Information Systems. LNCS, vol. 3631, pp. 233-248. Springer, Heidelberg (2005)Google Scholar
- 53.Merceron, A., Yacef, K.: Directions to Enhance Learning Management Systems for Better Data Mining. Personal Communication (2010)Google Scholar
- 54.Yan, S., Li, Z.: Commercial decision system based on data warehouse and OLAP. Microelectron. Comput. 2, 64–67 (2006)Google Scholar
- 55.Zorrilla, M.E., Menasalvas, E., Marin, D., Mora, E., Segovia, J.: Web usage mining project for improving web-based learning sites. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) Computer Aided Systems Theory—EUROCAST 2005. LNCS, vol. 3643, pp. 205–210. Springer, Heidelberg (2005)Google Scholar
- 56.Yin, C., Luo, Q.: Personality mining system in e-learning by using improved association rules. In: International Conference on Machine Learning and Cybernetics, pp. 4130–4134. IEEE, Hong Kong (2007)Google Scholar
- 57.Heiner, C., Beck, J.E., Mostow, J.: Lessons on using ITS data to answer educational research questions. In: Lester, J.C., Vicari, R.S., Paraguaçu, F. (eds.) Intelligent Tutoring Systems, 7th International Conference, ITS 2004. LNCS, vol. 3220, pp. 1–9. Springer, Heidelberg (2004)Google Scholar
- 58.Rubin, D.B., Little, R.J.A.: Statistical Analysis with Missing Data. Wiley, New York (2002)MATHGoogle Scholar
- 59.Salmeron-Majadas, S., Santos, O., Boticario, J.G., Cabestrero, R., Quiros, P.: Gathering emotional data from multiple sources. In: D’Mello, S.K., Calvo, R.A., Olney, A. (eds.) 6th International Conference on Educational Data Mining, pp. 404–405. International Educational Data Mining Society, Memphis (2013)Google Scholar
- 60.Shuangcheng, L., Ping, W.: Study on the data preprocessing of the questionarie based on the combined classification data mining model. In: International Conference on e-Learning, Enterprise Information Systems and E-Goverment, pp. 217–220. Las Vegas (2009)Google Scholar
- 61.García, E., Romero, C., Ventura, S., Castro, C.: An architecture for making recommendations to courseware authors using association rule mining and collaborative filtering. User Model. User-Adap. Inter. 19(1–2), 99–132 (2009)CrossRefGoogle Scholar
- 62.Huang, C., Lin, W., Wang, S., Wang, W.: Planning of educational training courses by data mining: using China Motor Corporation as an example. Expert Syst. Appl. J. 36(3), 7199–7209 (2009)CrossRefGoogle Scholar
- 63.Kantardzic, M.: Data Mining: Concepts, Models, Methods, and Algorithms. Wiley, New York (2003)Google Scholar
- 64.Beck, J.E.: Using learning decomposition to analyze student fluency development. In: Workshop on Educational Data Mining at the 8th International Conference on Intelligent Tutoring Systems, pp. 21–28. Jhongli (2006)Google Scholar
- 65.Redpath, R., Sheard, J.: Domain knowledge to support understanding and treatment of outliers. In: International Conference on Information and Automation, pp. 398–403. IEEE, Colombo (2005)Google Scholar
- 66.Sunita, S.B., Lobo, L.M.: Data preparation strategy in e-learning system using association rule algorithm. Int. J. Comput. Appl. 41(3), 35–40 (2012)Google Scholar
- 67.Ivancsy, R., Juhasz, S.: Analysis of web user identification methods. World Acad. Sci. Eng. Technol. J. 34, 338–345 (2007)Google Scholar
- 68.Rahkila, M., Karjalainen, M.: Evaluation of learning in computer based education using log systems. In: ASEE/IEEE Frontiers in Education Conference, pp. 16–21. IEEE, San Juan (1999)Google Scholar
- 69.Wang, F.H.: Content recommendation based on education-contextualized browsing events for web-based personalized learning. Educ. Technol. Soc. 11(4), 94–112 (2008)Google Scholar
- 70.Munk, M., Drlík, M.: Impact of Different pre-processing tasks on effective identification of users’ behavioral patterns in web-based educational system. Procedia Comput. Sci. 4, 1640–1649 (2011)CrossRefGoogle Scholar
- 71.Heraud, J.M., France, L., Mille, A.: Pixed: an ITS that guides students with the help of learners’ interaction log. In: Lester, J.C., Vicari, R.S., Paraguaçu, F. (eds.) Intelligent Tutoring Systems, 7th International Conference, ITS 2004. LNCS, vol. 3220, pp. 57–64. Springer, Heidelberg (2004)Google Scholar
- 72.Sheard, J., Ceddia, J., Hurst, J., Tuovinen, J.: Inferring student learning behaviour from website interactions: a usage analysis. J. Educ. Inf. Technol. 8(3), 245–266 (2003)CrossRefGoogle Scholar
- 73.Petersen, R.J.: Policy dimensions of analytics in higher education. Educause Rev. 47, 44–49 (2012)Google Scholar
- 74.Bienkowski, M., Feng, M., Means, B.: Enhancing Teaching and Learning Through Educational Data Mining and Learning Analytics: An Issue Brief. U.S. Department of Education, Office of Educational Technology, pp. 1–57 (2012)Google Scholar
- 75.Liu, H., Motoda, H.: Computational Methods of Feature Selection. Chapman & Hall/CRC, Boca Raton (2007)MATHGoogle Scholar
- 76.Delavari, N., Phon-Amnuaisuk, S., Beikzadeh, M.: Data mining application in higher learning institutions. Inf. Educ. J. 7(1), 31–54 (2008)Google Scholar
- 77.Kotsiantis, B., Kanellopoulos, D., Pintelas, P.: Data pre-processing for supervised learning. Int. J. Comput. Sci. 1(2), 111–117 (2006)Google Scholar
- 78.Mihaescu, C., Burdescu, D.: Testing attribute selection algorithms for classification performance on real data. In: International IEEE Conference Intelligent Systems, pp. 581–586. IEEE, London (2006)Google Scholar
- 79.Márquez-Vera, C., Cano, A., Romero, C., Ventura, S.: Predicting student failure at school using genetic programming and different data mining approaches with high dimensional and imbalanced data. Appl. Intell. 38(3), 315–330 (2013)CrossRefGoogle Scholar
- 80.Wong, S.K., Nguyen, T.T., Chang, E., Jayaratnal, N.: Usability metrics for e-learning. In: Meersman, R., Tari, Z. (eds.) On the Move to Meaningful Internet Systems 2003: OTM 2003 Workshops, LNCS, vol. 2889, pp. 235–252. Springer, Heidelberg (2003)Google Scholar
- 81.Hershkovitz, A. Nachmias, R.: Consistency of students’ pace in online learning. In: Barnes, T., Desmarais, M., Romero, R., Ventura, S. (eds.) 2nd International Conference on Educational Data Mining, pp. 71–80. International Educational Data Mining Society, Cordoba (2009)Google Scholar
- 82.Mor, E., Minguillón, J.: E-learning personalization based on itineraries and long-term navigational behavior. In: Thirteenth World Wide Web Conference, pp. 264–265. ACM, New York (2004)Google Scholar
- 83.Nilakant, K., Mitrovic, A.: Application of data mining in constraint based intelligent tutoring systems. In: International Conference on Artificial Intelligence in Education, pp. 896–898. Amsterdam (2005)Google Scholar
- 84.Baker, R., Carvalho, M.: A labeling student behavior faster and more precisely with text replays. In: Baker, R.S.J.d, Barnes, T., Beck, J.E. (eds.) 1st International Conference on Educational Data Mining, pp. 38–47. International Educational Data Mining Society, Montreal (2008)Google Scholar
- 85.Zhou, M., Xu, Y., Nesbit., J.C., Winne, P.H.: Sequential pattern analysis of learning logs: methodology and applications. In: Romero, C., Ventura, S., Pechenizkiy, M., Baker, R.S. J.D. (eds.) Handbook of Educational Data Mining, Chapman & Hall/CRC Data Mining and Knowledge Discovery Series, pp. 107–120. CRC Press, Boca Raton (2010)Google Scholar
- 86.Liu, B.: Web Data Mining: Exploring Hyperlinks, Contents and Usage Data. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 87.Thai, D., Wu, H., Li, P.: A hybrid system: neural network with data mining in an e-learning environment. In: Jain, L., Howlett, R.J., Apolloni, B. (eds.) Knowledge-Based Intelligent Information and Engineering Systems, 11th International Conference, KES 2007, XVII Italian Workshop on Neural Networks. LNCS, vol. 4693, pp. 42–49. Springer, Heidelberg (2007)Google Scholar
- 88.Hien, N.T.N., Haddawy, P.: A decision support system for evaluating international student applications. In: Frontiers in Education Conference, pp. 1–6. IEEE, Piscataway (2007)Google Scholar
- 89.Kosheleva, O., Kreinovich, V., Longrpre, L.: Towards interval techniques for processing educational data. In: International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, pp. 1–28. IEEE Computer Society, Washington (2006)Google Scholar
- 90.Hämäläinen, W., Vinni, M.: Classifiers for educational data mining. In: Romero, C., Ventura, S., Pechenizkiy, M., Baker, R.S.J.d. (eds.) Handbook of Educational Data Mining, Chapman & Hall/CRC Data Mining and Knowledge Discovery Series, pp. 57–71. CRC Press, Boca Raton (2010)Google Scholar
- 91.Cocea, M., Weibelzahl, S.: Can log files analysis estimate learners’ level of motivation? In: Workshop week Lernen—Wissensentdeckung—Adaptivität, pp. 32–35. Hildesheim (2006)Google Scholar
- 92.Tanimoto, S.L.: Improving the prospects for educational data mining. In: Track on Educational Data Mining, at the Workshop on Data Mining for User Modeling, at the 11th International Conference on User Modeling, pp. 1–6. User Modeling Inc., Corfu (2007)Google Scholar
- 93.Werner, L., McDowell, C., Denner, J.: A first step in learning analytics: pre-processing low-level Alice logging data of middle school students. J. Educ. Data Min. (2013, in press)Google Scholar
- 94.Alcalá, J., Sanchez, L., García, S., Del Jesus, M.J., Ventura, S., Garrell, J.M., Otero, J., Romero, C., Bacardit, J., Rivas, V., Fernández, J.C., Herrera, F.: KEEL: a software tool to assess evolutionary algorithms to data mining problems. Soft. Comput. 13(3), 307–318 (2009)CrossRefGoogle Scholar
- 95.Gonçalves, P.M., Barros, R.S.M.: Automating data preprocessing with DMPML and KDDML. In: 10th IEEE/ACIS International Conference on Computer and Information Science, pp. 97–103. IEEE, Washington (2011)Google Scholar
- 96.Zaïne, O.R., Luo, J.: Towards evaluating learners’ behaviour in a web-based distance learning environment. In: IEEE International Conference on Advanced Learning Technologies, pp. 357–360. Madison, WI (2001)Google Scholar
- 97.Ceddia, J., Sheard, J., Tibbery, G.: WAT: a tool for classifying learning activities from a log file. In: Ninth Australasian Computing Education Conference, pp. 11–17. Australian Computer Society, Darlinghurst (2007)Google Scholar
- 98.Rodrigo, M.T., Baker, R., McLaren, B.M., Jayme, A., Dy, T. : Development of a workbench to address the educational data mining bottleneck. In: Yacef, K., Zaïane, O., Hershkovitz, A., Yudelson, M., Stamper, J. (eds.) 5th International Conference on Educational Data Mining, pp. 152–155. International Educational Data Mining Society, Chania (2012)Google Scholar
- 99.Koedinger, K., Cunningham, K., Skogsholm, A., LEBER, B.: An open repository and analysis tools for fine-grained, longitudinal learner data. In: Baker, R.S.J.d, Barnes, T., Beck, J.E. (eds.) 1st International Conference on Educational Data Mining, pp. 157–166. International Educational Data Mining Society, Montreal (2008)Google Scholar