Advertisement

Brain Activity Correlates of Quality of Experience

Chapter
Part of the T-Labs Series in Telecommunication Services book series (TLABS)

Abstract

This chapter outlines common brain activity correlates that are known from neuroscience, gives an overview on established electrophysiological analysis methods and on the background of electroencephalography (EEG). After that an overview on study designs will be given and a practical guideline for the design of experiments using EEG in the research area of Quality of Experience (QoE) will be presented. At the end of this chapter we will close with a summary, give practical advice, and we will outline potential interesting future research topics.

Keywords

Mean Opinion Score Asymmetry Index Theta Band Oddball Paradigm Audiovisual Speech 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Le Callet P, Möller S, Perkis A (eds) (2013) Qualinet white paper on definitions of quality of experience. European network on quality of experience in multimedia systems and services (COST Action IC 1003), Lausanne, Version 1.2, Novi Sad, March 2013Google Scholar
  2. 2.
    Cacippio J, Tassinary L, Berntson G (eds) (2007) Handbook of psychophysiology. Cambridge University Press, CambridgeGoogle Scholar
  3. 3.
    Parasuraman R, Rizzo M (eds) (2008) Neuroergonomics: the brain at work. Oxford University Press, OxfordGoogle Scholar
  4. 4.
    Berger H (1929) Über das Elektrenkephalogramm des Menschen. Arch f Pschiatr 87:527–570CrossRefGoogle Scholar
  5. 5.
    Duncan C, Barry R, Connolly J, Fischer C, Michie P, Näätänen R, Polich J, Reinvang I, Petten C (2009) Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300 and N400. Clin Neurophysiol 120:1883–1903CrossRefGoogle Scholar
  6. 6.
    Coles MS, Rugg M (1995) Event-related brain potentials: an introduction. In: Coles MS, Rugg M (eds) Electrophysiology of mind: event-related brain potentials and cognition. Oxford University Press, OxfordGoogle Scholar
  7. 7.
    Moldovan AN, Ghergulescu I, Weibelzahl S, Muntean CH (2013) User-centered EEG-based multimedia quality assessment. In: Proceedings of international symposium on broadband multimedia systems broadcastingGoogle Scholar
  8. 8.
    Perez J, Deléchelle E (2013) On the measurement of image quality perception using frontal EEG analysis. International conference on smart communications in network technologies (SaCoNeT)Google Scholar
  9. 9.
    Pizzagalli DA (2007) Electroencephalography and high-density electrophysiological source localization. In: Cacippio J, Tassinary L, Berntson G (eds) Handbook of psychophysiology. Cambridge University Press, CambridgeGoogle Scholar
  10. 10.
    Lal S, Craig A (2005) Reproducibility of the spectral components of the electroencephalogram during driver fatigue. Int J Psychophysiol 55:137–143CrossRefGoogle Scholar
  11. 11.
    Punsawad Y, Aempedchr S, Wongsawat Y, Panichkun M (2011) Weighted-frequency index for EEG based mental fatigue alarm system. Int J Appl Biomed Eng 4(1):36–41Google Scholar
  12. 12.
    Coan JA, Allen J (2004) Frontal EEG asymmetry as a moderator and mediator of emotion. Biol Psychol 67(1):7–50CrossRefGoogle Scholar
  13. 13.
    American clinical neurophysiology society (2006) Guideline 5—guidelines for standard electrode position nomenclature. J Clin Neurophysiol 23(2):107–110Google Scholar
  14. 14.
    Antons JN, Schleicher R, Arndt S, Möller S, Curio G (2012) Too tired for calling? A physiological measure of fatigue caused by bandwidth limitations. In: Proceedings of the quality of multimedia experience (QoMEX)Google Scholar
  15. 15.
    Arndt S, Schleicher R, Antons JN (2013) Does low quality audiovisual content increase fatigue of viewers? In: Proceedings perceptual quality of systems (PQS)Google Scholar
  16. 16.
    Antons JN, Köster F, Arndt S, Möller S, Schleicher R (2013) Changes of vigilance caused by varying bit rate conditions. In: Proceedings of the quality of multimedia experience (QoMEX)Google Scholar
  17. 17.
    Arndt S, Antons JN, Gupta R, Laghari K, Schleicher R, Möller S, Falk TH (2013) The effects of text-to-speech system quality on emotional states and frontal alpha band power. In: Proceedings of the EMBS neural, engineering conferenceGoogle Scholar
  18. 18.
    Näätänen R (2008) Mismatch negativity (MMN) as an index of central auditory system plasticity. Int J Audiol 47:16–20CrossRefGoogle Scholar
  19. 19.
    Garrido M, Kilner J, Stephan K, Friston K (2009) The mismatch negativity: a review of underlying mechanisms. Clin Neurophysiol 120:453–463CrossRefGoogle Scholar
  20. 20.
    Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118(10):2128–2148CrossRefGoogle Scholar
  21. 21.
    Mustafa M, Guthe S, Magnor M (2012) Single trial EEG classification of artifacts in videos. ACM Trans Appl Percept 9(3):1–15CrossRefGoogle Scholar
  22. 22.
    Blankertz B, Lemm S, Treder MS, Haufe S, Müller KR (2011) Single-trial analysis and classification of ERP components—a tutorial. Neuroimage 56:814–825CrossRefGoogle Scholar
  23. 23.
    Miettinen I, Tiitinen H, Alku P, May P (2010) Sensitivity of the human auditory cortex to acoustic degradation of speech and non-speech sound. BMC Neurosci 11(24):1471–2202Google Scholar
  24. 24.
    Antons JN, Schleicher R, Arndt S, Möller S, Porbadnigk AK, Curio G (2012) Analyzing speech quality perception using electroencephalography. J Select Topics Signal Proc 6(6):721–731CrossRefGoogle Scholar
  25. 25.
    Antons JN, Porbadnigk A, Schleicher R, Blankertz B, Möller S, Curio G (2010) Subjective listening tests and neural correlates of speech degradation in case of signal-correlated noise. In: Proceedings of the audio engineering society (AES)Google Scholar
  26. 26.
    ITU-T Recommendation BT.500-13 (2012) Methodology for the subjective assessment of the quality of television pictures. International Telecommunication Union, GenevaGoogle Scholar
  27. 27.
    Arndt S, Antons JN, Schleicher R, Möller S, Scholler S, Curio G (2011) A physiological approach to determine video quality. In: Proceedings of the international symposium on multimedia (ISM)Google Scholar
  28. 28.
    Arndt S, Antons JN, Schleicher R, Möller S, Curio G (2012) Perception of low-quality videos analyzed by means of electroencephalography. In: Proceedings of the quality of multimedia experience (QoMEX)Google Scholar
  29. 29.
    ITU-T Recommendation P.800 (1996) Methods for subjective determination of transmission quality. International Telecommunication Union, GenevaGoogle Scholar
  30. 30.
    Scholler S, Bosse S, Treder MS, Blankertz B, Curio G, Müller KR, Wiegand T (2012) Towards a direct measure of video quality perception using EEG. IEEE Trans Image Process 21(5):2619–2629CrossRefMathSciNetGoogle Scholar
  31. 31.
    Lindemann L, Wenger S, Magnor M (2011) Evaluation of video artifact perception using event-related potentials. In: Proceedings of the applied perception in computer graphics and visualization (APGV)Google Scholar
  32. 32.
    Li HC, Seo J, Kham K, Lee S (2008) Measurement of 3D visual fatigue using event-related potential (ERP): 3D oddball paradigm. In: 3DTV conference: the true vision-capture, transmission and display of 3D Video, pp 213–216Google Scholar
  33. 33.
    Luck S (2004) Ten simple rules for designing ERP experiments. In: Handy T (ed) Event-related potentials: a methods handbook. MIT Press, CambridgeGoogle Scholar
  34. 34.
    Roeser R, Valente M, Hosfort-Dunn H (2007) Audiology diagnosis. Thieme, StuttgartGoogle Scholar
  35. 35.
    Wong P, Skoe E, Russo N, Dees T, Kraus N (2007) Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nat Neurosci 10(4):420–422Google Scholar
  36. 36.
    Gupta R, Rehman K, Arndt S, Schleicher R, Möller S, O’Shaughnessy D, Falk T (2013) Using fNIRS to characterize human perception of TTS system quality, comprehension, and fluency: preliminary findings. In: Proceedings of the perceptual quality of systems (PQS)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Quality and Usability Lab, Telekom Innovation Laboratories, TU BerlinBerlinGermany

Personalised recommendations