Advertisement

Crowdsourcing in QoE Evaluation

  • Tobias  HoßfeldEmail author
  • Christian Keimel
Chapter
Part of the T-Labs Series in Telecommunication Services book series (TLABS)

Abstract

Crowdsourcing enables new possibilities for QoE evaluation by moving the evaluation task from the traditional laboratory environment into the Internet, allowing researchers to easily access a global pool of subjects for the evaluation task. This makes it not only possible to include a more diverse population and real-life environments into the evaluation, but also reduces the turn-around time and increases the number of subjects participating in an evaluation campaign significantly by circumventing bottle-necks in traditional laboratory setup. In order to utilise these advantages, the differences between laboratory-based and crowd-based QoE evaluation must be considered and we therefore discuss both these differences and their impact on the QoE evaluation in this chapter.

Keywords

Task Design Video Quality Evaluation Task Reliability Mechanism Content Question 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alonso O, Rose DE, Stewart B (2008) Crowdsourcing for relevance evaluation. ACM SIGIR Forum 42(2):9–15. doi: 10.1145/1480506.1480508. http://doi.acm.org/10.1145/1480506.1480508
  2. 2.
    Amazon Mechanical Turk (2013). http://mturk.com
  3. 3.
    Barkowsky M, Li J, Han T, Youn S, Ok J, Lee C, Hedberg C, Ananth IV, Wang K, Brunnström K et al (2013) Towards standardized 3dtv qoe assessment: cross-lab study on display technology and viewing environment parameters. In: IS&T/SPIE electronic imaging, International Society for Optics and Photonics, pp 864, 809–864, 809Google Scholar
  4. 4.
    Catellier A, Pinson M, Ingram W, Webster A (2012) Impact of mobile devices and usage location on perceived multimedia quality. In: 2012 fourth international workshop on quality of multimedia experience (QoMEX), IEEE, pp 39–44Google Scholar
  5. 5.
    Chen KT, Chang CJ, Wu CC, Chang YC, Lei CL (2010) Quadrant of euphoria: a crowdsourcing platform for QoE assessment. Network, IEEE 24(2):28–35. doi: 10.1109/MNET.2010.5430141 CrossRefGoogle Scholar
  6. 6.
    De Simone F, Naccari M, Tagliasacchi M, Dufaux F, Tubaro S, Ebrahimi T (2009) Subjective assessment of H.264/AVC video sequences transmitted over a noisy channel. In: Proceedings of the first international workshop on quality of multimedia experience (QoMEX 2009), pp 204–209. doi: 10.1109/QOMEX.2009.5246952
  7. 7.
    Downs JS, Holbrook MB, Sheng S, Cranor LF (2010) Are your participants gaming the system? Screening mechanical turk workers. In: Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’10, ACM, New York, NY, USA, pp 2399–2402 doi: 10.1145/1753326.1753688. http://doi.acm.org/10.1145/1753326.1753688
  8. 8.
    Eickhoff C, Harris CG, de Vries AP, Srinivasan P (2012) Quality through flow and immersion: gamifying crowdsourced relevance assessments. In: Proceedings of ACM SIGIR conference on research and development in information retrieval 2012. ACMGoogle Scholar
  9. 9.
    Eickhoff C, de Vries A (2012) Increasing cheat robustness of crowdsourcing tasks. Inf Retrieval 16(2):121–137. doi: 10.1007/s10791-011-9181-9 Google Scholar
  10. 10.
    Facebook (2013). http://www.facebook.com
  11. 11.
    Gardlo B, Ries M, Hoßfeld T (2012) Impact of screening technique on crowdsourcing QoE assessments. In: 22nd international conference radioelektronika 2012, special session on quality in multimedia systems. Brno, Czech RepublicGoogle Scholar
  12. 12.
    Hirth M, Hoßfeld T, Tran-Gia P (2011) Anatomy of a crowdsourcing platform—using the example of Microworkers.com. In: Workshop on future internet and next generation networks (FINGNet). Seoul, Korea. doi: 10.1109/IMIS.2011.89
  13. 13.
    Hoßfeld T, Keimel C, Hirth M, Gardlo B, Habigt J, Diepold K, Tran-Gia P (2013) CrowdTesting: a novel methodology for subjective user studies and QoE evaluation. Technical report 486, University of WürzburgGoogle Scholar
  14. 14.
    Hoßfeld T, Seufert M, Hirth M, Zinner T, Tran-Gia P, Schatz R (2011) Quantification of youtube qoe via crowdsourcing. In: 2011 IEEE international symposium on multimedia (ISM), pp 494–499. doi: 10.1109/ISM.2011.87
  15. 15.
    Hsueh PY, Melville P, Sindhwani V (2009) Data quality from crowdsourcing: a study of annotation selection criteria. In: Proceedings of the NAACL HLT 2009 workshop on active learning for natural language processing, HLT ’09, Association for Computational Linguistics, Stroudsburg, PA, USA, pp 27–35 http://dl.acm.org/citation.cfm?id=1564131.1564137
  16. 16.
    ITU-R BT.500-13 (2012) Methodology for the subjective assessment of the quality of television pictures. International Telecommunication Union, Geneva, SwitzerlandGoogle Scholar
  17. 17.
    Keimel C, Habigt J, Diepold K (2012) Challenges in crowd-based video quality assessment. In: 2012 fourth international workshop on quality of multimedia experience (QoMEX), pp 13–18. doi: 10.1109/QoMEX.2012.6263866
  18. 18.
    Keimel C, Habigt J, Horch C, Diepold K (2012) Qualitycrowd—a framework for crowd-based quality evaluation. In: Picture coding symposium (PCS), pp 245–248. doi: 10.1109/PCS.2012.6213338
  19. 19.
    Keimel C, Habigt J, Horch C, Diepold K (2012) Video quality evaluation in the cloud. In: Packet video workshop (PV), 2012 19th, international, pp 155–160. doi: 10.1109/PV.2012.6229729
  20. 20.
    Kittur A, Chi E, Suh B (2008) Crowdsourcing user studies with mechanical turk. In: Proceedings of the twenty-sixth annual SIGCHI conference on human factors in computing systems. ACM, pp 453–456Google Scholar
  21. 21.
    Kittur A, Chi EH, Suh B (2008) Crowdsourcing user studies with mechanical turk. In: Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’08, ACM, New York, NY, USA, pp 453–456. doi: 10.1145/1357054.1357127. http://doi.acm.org/10.1145/1357054.1357127
  22. 22.
    Microworkers (2013). http://microworkers.com
  23. 23.
    Pinson MH, Janowski L, Pepion R, Huynh-Thu Q, Schmidmer C, Corriveau P, Younkin A, Le Callet P, Barkowsky M, Ingram W (2011) The influence of subjects and environment on audiovisual subjective tests: an international study. Selected Topics in Signal Processing, IEEE Journal of, 6(6):640–651. doi: 10.1109/JSTSP.2012.2215306
  24. 24.
    Ross J, Irani L, Silberman M, Zaldivar A, Tomlinson B (2010) Who are the crowdworkers? Shifting demographics in mechanical turk. In: Proceedings of the 28th of the international conference extended abstracts on human factors in computing systems, ACM, pp 2863–2872. doi: 10.1145/1753846.1753873
  25. 25.
    Sabou M, Bontcheva K, Scharl A (2012) Crowdsourcing research opportunities: lessons from natural language processing. In: Proceedings of the 12th international conference on knowledge management and knowledge technologies, ACM, p 17Google Scholar
  26. 26.
    Shaw AD, Horton JJ, Chen DL (2011) Designing incentives for inexpert human raters. In: Proceedings of the ACM 2011 conference on computer supported cooperative work, CSCW ’11, ACM, New York, NY, USA, pp 275–284. doi: 10.1145/1958824.1958865 http://doi.acm.org/10.1145/1958824.1958865
  27. 27.
    Suri S, Goldstein D, Mason W (2011) Honesty in an online labor market. In: Human computation: papers from the 2011 AAAI, Workshop (WS-11-11)Google Scholar
  28. 28.
    Technische Universität München, Institute for Data Processing: Qualitycrowd (2013). http://www.ldv.ei.tum.de/videolab
  29. 29.
    Varela M, Mäki T, Skorin-Kapov L, Hoßfeld T (2013) Increasing payments in crowdsourcing: don’t look a gift horse in the mouth. In: 4th international workshop on perceptual quality of systems (PQS 2013). Vienna, AustriaGoogle Scholar
  30. 30.
    Von Ahn L, Dabbish L (2004) Labeling images with a computer game. In: Proceedings of the SIGCHI conference on human factors in computing systems, ACM, pp 319–326Google Scholar
  31. 31.
    Wang Z, Bovik A, Sheikh H, Simoncelli E (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612. doi: 10.1109/TIP.2003.819861 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of Computer Science, Chair of Communication NetworksUniversity of WürzburgWürzburgGermany
  2. 2.Institute for Data Processing, TU MunichMunichGermany

Personalised recommendations