• Rahul Chaudhari
  • Ercan Altinsoy
  • Eckehard Steinbach
Part of the T-Labs Series in Telecommunication Services book series (TLABS)


Haptic communications refers to the ability to touch, feel and to physically manipulate objects in a remote (real or virtual) environment via technical means. The realization of convincing haptic interactions requires a solid understanding of both kinesthetic and tactile perceptual mechanisms and stimulation principles. This chapter starts with a concise overview of the current state of knowledge in these two areas. Then, we discuss the main performance parameters for haptic interaction systems, and point towards factors that may influence QoE in haptics. So far, the quality experienced by the human during haptic interaction has been mainly evaluated via time-consuming and costly subjective tests and only recently, first preliminary approaches for objective quality evaluation have surfaced. We briefly touch upon this topic and finish the chapter with a discussion of model-based prediction of haptic feedback quality.


Tactile Feedback Just Noticeable Difference Haptic Perception Haptic Rendering Haptic Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported, in part, by the German Research Foundation (project STE 1093/4-2) and, in part, by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC under Grant 258941.


  1. 1.
    Ajovalasit M, Giacomin J (2007) Effect of automobile operating condition on the subjective equivalence of steering wheel vibration and sound. Int J Veh Noise Vib 3(2):197–215CrossRefGoogle Scholar
  2. 2.
    Altinsoy ME (2011) What can we learn from psychoacoustics regarding the perception of whole-body vibrations? Tactile descriptors for whole-body vibrations. In: Proceedings of 2nd Polish-German structured conference on acoustics. The 58th open seminar on acoustics. Jurata, PolandGoogle Scholar
  3. 3.
    Altinsoy ME, Merchel S (2009) Audiotactile feedback design for touch screens. In: Haptic and audio interaction design. Springer, Berlin, pp 136–144Google Scholar
  4. 4.
    Altinsoy ME (2006) Auditory-tactile interaction in virtual environments. Shaker Verlag, AachenGoogle Scholar
  5. 5.
    Altinsoy ME (2012) The quality of auditory-tactile virtual environments. J Audio Eng Soc 60(1/2):38–46Google Scholar
  6. 6.
    Altinsoy ME, Merchel S (2012) Electrotactile feedback for handheld devices with touch screen and simulation of roughness. IEEE Trans Haptics 5(1):6–13CrossRefGoogle Scholar
  7. 7.
    Altinsoy ME (2013) Identification of quality attributes of automotive idle sounds and whole-body vibrations. Int J Veh Noise Vib 9(1/2):4–27CrossRefGoogle Scholar
  8. 8.
    Aracil R, Buss M, Cobos S, Ferre M, Hirche S, Kuschel M, Peer A (2007) Advances in telerobotics: the human role in telerobotics. Springer, Berlin (Chap. 1)Google Scholar
  9. 9.
    Barbagli F, Salisbury K, Ho C, Spence C, Tan H (2006) Haptic discrimination of force direction and the influence of visual information. ACM Trans Appl Percept 3(2):135–143CrossRefGoogle Scholar
  10. 10.
    Barlow HB, Mollon JD (1982) The senses. Cambridge University Press, CambridgeGoogle Scholar
  11. 11.
    Brewster S, Chohan F, Brown L (2007) Tactile feedback for mobile interactions. In: Proceedings of SIGCHI conference on human factors in computing systems, CHI ’07. ACM, New York, pp 159–162Google Scholar
  12. 12.
    Burdea GC (1996) Force and touch feedback for virtual reality. Wiley, New YorkGoogle Scholar
  13. 13.
    Chaudhari R, Steinbach E, Hirche S (2011) Towards an objective quality evaluation framework for haptic data reduction. In: Proceedings of IEEE world haptics conference. Istanbul, Turkey, pp 539–544Google Scholar
  14. 14.
    Chauhan S, Coelho RF, Kalan S, Satava RM, Patel VR (2012) Robotic urologic surgery: evolution of robotic surgery: past, present, and future, Chap. 1. Springer, BerlinGoogle Scholar
  15. 15.
    Cisco Systems Inc (2011) TelePresence.
  16. 16.
    Daub M, Altinsoy E (2004) Audiotactile simultaneity perception of whole-body vibrations produced by musical presentations. In: Proceedings of CFA/DAGAGoogle Scholar
  17. 17.
    Ferrell W, Sheridan T (1967) Supervisory control of remote manipulation. IEEE Spectr 4(10):81–88CrossRefGoogle Scholar
  18. 18.
    Fischer A, Barhak J (2001) Tele-design for manufacturing. CIRP Ann-Manuf Technol 50(1):77–80CrossRefGoogle Scholar
  19. 19.
    Fujii Y, Usui H, Shinohara Y (1992) Development of multi-functional telerobotic systems for reactor dismantlement. J Nucl Sci Technol 29(9):930–936CrossRefGoogle Scholar
  20. 20.
    Hamam A, Eid M, Saddik AE, Georganas ND (2008) A quality of experience model for haptic user interfaces. In: Proceedings of workshop haptic user interfaces (Ambient Media Systems), pp 1–6Google Scholar
  21. 21.
    Hamam A, El Saddik A (2013) Toward a mathematical model for quality of experience evaluation of haptic applications. IEEE Trans Instrum Meas 62(12):3315–3322Google Scholar
  22. 22.
    Hess RA (1980) Structural model of the adaptive human pilot. J Guidance Control Dyn 3(5):416–423CrossRefzbMATHGoogle Scholar
  23. 23.
    Hewlett-Packard Development Company, L.P (2011) Introducing Halo.
  24. 24.
    Hinterseer P, Hirche S, Chaudhuri S, Steinbach E, Buss M (2008) Perception-based data reduction and transmission of haptic data in telepresence and teleaction systems. IEEE Trans Signal Process 56(2):588–597CrossRefMathSciNetGoogle Scholar
  25. 25.
    Hirche S, Ferre M, Barrio J, Melchiorri C, Buss M (2007) Advances in telerobotics: Bilateral control architectures for telerobotics, Chap. 10. Springer, BerlinGoogle Scholar
  26. 26.
    Hoggan E, Brewster SA, Johnston J (2008) Investigating the effectiveness of tactile feedback for mobile touchscreens. In: Proceedings of SIGCHI conference on human factors in computing systems. ACM, New York, pp 1573–1582Google Scholar
  27. 27.
    von Holst E (1954) Relations between the central nervous system and the peripheral organs. British J Anim Behav 2:89–94CrossRefGoogle Scholar
  28. 28.
    Iglesias R, Casado S, Gutirrez T, Garca-Alonso A, Yu W, Marshall A (2008) Simultaneous remote haptic collaboration for assembling tasks. Multimedia Syst 13(4):263–274CrossRefGoogle Scholar
  29. 29.
    Ijsselsteijn WA, de Ridder H, Freeman J, Avons SE (2000) Presence: concept, determinants and measurement. Proc SPIE 3959:520–529CrossRefGoogle Scholar
  30. 30.
    Jekosch U (2004) Basic concepts and terms of “quality”, reconsidered in the context of product-sound quality. Acta Acustica united with Acustica 90(6):999–1006Google Scholar
  31. 31.
    Kammerl J, Chaudhari R, Steinbach E (2010) Exploting directional dependencies of force perception for lossy haptic data reduction. In: Proceedings of IEEE international symposium on haptic audio-visual environments and games (HAVE). Phoenix, AZ, USA, pp 1–6Google Scholar
  32. 32.
    Kingdom FAA, Prins N (2009) Psychophysics: a practical introduction. Academic Press, LondonGoogle Scholar
  33. 33.
    Klatzky R, Lederman S (2003) Handbook of psychology: touch, Chap. 2. Wiley, New YorkGoogle Scholar
  34. 34.
    Kron A (2004) Beiträge zur bimanuellen und mehrfingrigen haptischen Informationsvermittlung in Telepräsenzsystemen. PhD. thesis, Technische Universität München, Institute of Automatic Control EngineeringGoogle Scholar
  35. 35.
    Kron A, Schmidt G, Petzold B, Zäh MI, Hinterseer P, Steinbach E (2004) Disposal of explosive ordnances by use of a bimanual haptic telepresence system. In: Proceedings of IEEE international conference on robotics and automation, vol 2, pp 1968–1973Google Scholar
  36. 36.
    Lawrence DA (1993) Stability and transparency in bilateral teleoperation. IEEE Trans Robot Autom 9(5):624–637CrossRefMathSciNetGoogle Scholar
  37. 37.
    Loomis J, Lederman S (1986) Tactual perception: handbook of perception and human performance, Chap. 31. Wiley, New YorkGoogle Scholar
  38. 38.
    Louis D, Greene T, Jacobson K, Rasmussen C, Kolowich P, Goldstein S et al (1984) Evaluation of normal values for stationary and moving two-point discrimination in the hand. J Hand Surg 9(4):552–555CrossRefGoogle Scholar
  39. 39.
    Merchel S, Altinsoy ME (2009) Vibratory and acoustical factors in multimodal reproduction of concert dvds. In: Haptic and audio interaction design. Springer, Berlin, pp 119–127Google Scholar
  40. 40.
    Minsky M (1980) Telepresence. Omni MagazineGoogle Scholar
  41. 41.
    Nashel A, Razzaque S (2013) Tactile virtual buttons for mobile devices. In: CHI’03 extended abstracts on human factors in computing systems. ACM, New York, pp 854–855Google Scholar
  42. 42.
    Obrist M, Seah SA, Subramanian S (2013) Talking about tactile experiences. In: Proceedings 2013 ACM annual conference on human factors in computing systems, CHI ’13. ACM, New York, pp 1659–1668Google Scholar
  43. 43.
    Orozco M, Silva J, Saddik AE, Petriu E (2012) Haptics rendering and applications: the role of haptics in games, Chap. 11. InTech, pp 217–234Google Scholar
  44. 44.
    Parizet E, Amari M, Nosulenko V (2007) Vibro-acoustical comfort in cars at idle: human perception of simulated sounds and vibrations from 3-and 4-cylinder diesel engines. Int J Veh Noise Vib 3(2):143–156CrossRefGoogle Scholar
  45. 45.
    Peer A, Unterhinninghofen U, Buss M (2006) Tele-assembly in wide remote environments. In: 2nd international workshop on human-centered robotic systems, pp 2–8Google Scholar
  46. 46.
    Pongrac H, Färber B, Hinterseer P, Kammerl J, Steinbach E (2006) Limitations of human 3d force discrimination. In: Human-centered robotics systems. Munich, GermanyGoogle Scholar
  47. 47.
    Quilliam TA (1978) Active touch: the mechanism of recognition of objects by manipulation, vol 1. Pergamon Press, Oxford (Chap. The structure of finger print skin)Google Scholar
  48. 48.
    Reintsema D, Landzettel K, Hirzinger G (2007) Advances in telerobotics: DLR’s advanced telerobotic concepts and experiments for on-orbit servicing, Chap. 19. Springer, BerlinGoogle Scholar
  49. 49.
    Ridao P, Carreras M, Hernandez E, Palomeras N (2007) Advances in telerobotics: underwater telerobotics for collaborative research, Chap. 20. Springer, BerlinGoogle Scholar
  50. 50.
    El Saddik A (2007) The potential of haptics technologies. IEEE Instrum Meas Mag 10(1):10–17CrossRefGoogle Scholar
  51. 51.
    Sheridan TB (1992) Musings on telepresence and virtual presence. Presence: teleoperators and virtual environments 1(1):120–126Google Scholar
  52. 52.
    Sheridan TB (1992) Telerobotics, automation, and human supervisory control. MIT Press, CambridgeGoogle Scholar
  53. 53.
    Spudis PD, Taylor GJ (1992) The roles of humans and robots as field geologists on the moon. In Lunar bases and space activities of the 21st century, vol 1, pp 307–313Google Scholar
  54. 54.
    Stamm M, Altinsoy M (2013) The technology of binaural listening. Springer, Berlin, pp 449–475 (Chap. Assessment of binaural-proprioceptive interaction in human-machine interfaces)Google Scholar
  55. 55.
    Steinbach E, Hirche S, Kammerl J, Vittorias I, Chaudhari R (2011) Haptic data compression and communication for telepresence and teleaction. IEEE Signal Process Mag 28(1):87–96CrossRefGoogle Scholar
  56. 56.
    Steinbach E, Hirche S, Ernst M, Brandi F, Chaudhari R, Kammerl J, Vittorias I (2012) Haptic communications. Proc IEEE 100(4):937–956CrossRefGoogle Scholar
  57. 57.
    Tan H, Barbagli F, Salisbury K, Ho C, Spence C (2006) Force-direction discrimination is not influenced by reference force direction. Haptics-e 4(1):1–6Google Scholar
  58. 58.
    Vstfjll D (2013) Affect as a component of perceived sound and vibration quality in aircraft. PhD. thesis, Chalmers University of TechnologyGoogle Scholar
  59. 59.
    Wang X, Liu PX, Wang D, Chebbi B, Meng M (2005) Design of bilateral teleoperators for soft environments with adaptive environmental impedance estimation. In: Proceedings of IEEE international conference on robotics and automation. Barcelona, Spain, pp 1139–1144Google Scholar
  60. 60.
    Yang TH, Kim SY, Kim CH, Kwon DS, Book WJ (2009) Development of a miniature pin-array tactile module using elastic and electromagnetic force for mobile devices. In: EuroHaptics conference 2009 and 3rd joint symposium on haptic interfaces for virtual environment and teleoperator systems, IEEE, pp 13–17Google Scholar
  61. 61.
    Yilmaz H (1964) On the laws of psychophysics. Bull Math Biol 26:235–237Google Scholar
  62. 62.
    Yokokohji Y, Yoshikawa T (1994) Bilateral control of master-slave manipulators for ideal kinesthetic coupling-formulation and experiment. IEEE Trans Robot Autom 10(5):605–620CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Rahul Chaudhari
    • 1
  • Ercan Altinsoy
    • 2
  • Eckehard Steinbach
    • 1
  1. 1.Institute for Media TechnologyTU MunichMunichGermany
  2. 2.Chair of Communication AcousticsTU DresdenDresdenGermany

Personalised recommendations