Social Navigation - Identifying Robot Navigation Patterns in a Path Crossing Scenario

  • Christina Lichtenthäler
  • Annika Peters
  • Sascha Griffiths
  • Alexandra Kirsch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8239)

Abstract

The work at hand addresses the question: What kind of navigation behavior do humans expect from a robot in a path crossing scenario? To this end, we developed the ”Inverse Oz of Wizard” study design where participants steered a robot in a scenario in which an instructed person is crossing the robot’s path. We investigated two aspects of robot behavior: (1) what are the expected actions? and (2) can we determine the expected action by considering the spatial relationship?

The overall navigation strategy, that was performed the most, was driving straight towards the goal and either stop when the person and the robot came close or drive on towards the goal and pass the path of the person. Furthermore, we found that the spatial relationship is significantly correlated with the performed action and we can precisely predict the expected action by using a Support Vector Machine.

Keywords

social navigation human-robot interaction spatial relationship 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Althaus, P., Ishiguro, H., Kanda, T., Miyashita, T., Christensen, H.I.: Navigation for Human-Robot Interaction Tasks. In: IEEE International Conference on Robotics and Automation (2004)Google Scholar
  2. 2.
    Arkin, R.C.: Behavior-Based Robotics. MIT Press (1998)Google Scholar
  3. 3.
    Basili, P., Sag, M., Kruse, T., Huber, M., Kirsch, A., Glasauer, S.: Strategies of Locomotor Collision Avoidance. Gait & Posture (2012)Google Scholar
  4. 4.
    Butler, J.T., Agah, A.: Psychological Effects of Behavior Patterns of a Mobile Personal Robot. In: Autonomous Robots (2001)Google Scholar
  5. 5.
    Chang, C.-C., Lin, C.-J.: LIBSVM: A Library for Support Vector Machines. ACM Transactions on Intelligent Systems and Technology 2 (2011), Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
  6. 6.
    Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press (2000)Google Scholar
  7. 7.
    Dautenhahn, K., Walters, M., Woods, S., Koay, K.L., Nehaniv, C.L., Sisbot, A., Alami, R., Siméon, T.: How I Serve You? A Robot Companion Approaching a Seated Person in a Helping Context. In: ACM SIGCHI/SIGART Conference on Human-Robot Interaction (2006)Google Scholar
  8. 8.
    Dautenhahn, K.: Methodology and Themes of Human-Robot Interaction: A Growing Research Field. International Journal of Advanced Robotic Systems (2007)Google Scholar
  9. 9.
    Green, A., Huttenrauch, H., Severinson Eklundh, K.: Applying the Wizard-of-Oz Framework to Cooperative Service Discovery and Configuration. In: IEEE International Workshop on Robot and Human Interactive Communication (2004)Google Scholar
  10. 10.
    Hall, E.T.: The Hidden Dimension. Anchor Books, New York (1969)Google Scholar
  11. 11.
    Hanheide, M., Peters, A., Bellotto, N.: Analysis of Human-Robot Spatial Behaviour Applying a Qualitative Trajectory Calculus. In: IEEE International Workshop on Robot and Human Interactive Communication (2012)Google Scholar
  12. 12.
    Hüttenrauch, H., Severinson Eklundh, K., Green, A., Topp, E.A.: Investigating Spatial Relationships in Human-Robot Interaction. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2006)Google Scholar
  13. 13.
    Kendon, A.: Conducting Interaction: Patterns of Behavior in Focused Encounters, vol. 7. CUP Archive (1990)Google Scholar
  14. 14.
    Kirby, R., Simmons, R., Forlizzi, J.: COMPANION: A Constraint-Optimizing Method for Person-Acceptable Navigation. In: IEEE International Symposium on Robot and Human Interactive Communication (2009)Google Scholar
  15. 15.
    Kruse, T., Kirsch, A., Akin Sisbot, E., Alami, R.: Dynamic Generation and Execution of Human Aware Navigation Plans. In: International Conference on Autonomous Agents and Multiagent Systems (2010)Google Scholar
  16. 16.
    Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-Aware Robot Navigation: A Survey. Robotics and Autonomous Systems (2013)Google Scholar
  17. 17.
    Lichtenthäler, C., Lorenz, T., Kirsch, A.: Influence of Legibility on Perceived Safety in a Virtual Human-Robot Path Crossing Task. In: IEEE International Symposium on Robot and Human Interactive Communication (2012)Google Scholar
  18. 18.
    Lichtenthäler, C., Peters, A., Griffiths, S., Kirsch, A.: Be a Robot! Robot Navigation Patterns in a Path Crossing Scenario. In: Proceedings of the 8th ACM/IEEE International Conference on Human Robot Interaction (2013)Google Scholar
  19. 19.
    Mumm, J., Mutlu, B.: Human-Robot Proxemics: Physical and Psychological Distancing in Human-Robot Interaction. In: ACM/IEEE International Conference on Human-Robot Interaction (2011)Google Scholar
  20. 20.
    Pacchierotti, E., Christensen, H.I., Jensfelt, P.: Human-Robot Embodied Interaction in Hallway Settings: a Pilot User Study. In: IEEE International Workshop on Robot and Human Interactive Communication. IEEE (2005)Google Scholar
  21. 21.
    Sisbot, E.A., Marin-Urias, L.F., Alami, R., Simeon, T.: A Human Aware Mobile Robot Motion Planner. IEEE Transactions on Robotics 23 (2007)Google Scholar
  22. 22.
    Steinfeld, A., Fong, T., Kaber, D., Lewis, M., Scholtz, J., Schultz, A., Goodrich, M.: Common Metrics for Human-Robot Interaction. In: ACM SIGCHI/SIGART Conference on Human-Robot Interaction (2006)Google Scholar
  23. 23.
    Steinfeld, A., Jenkins, O.C., Scassellati, B.: The Oz of Wizard: Simulating the Human for Interaction Research. In: ACM/IEEE International Conference on Human-Robot Interaction (2009)Google Scholar
  24. 24.
    Takayama, L., Pantofaru, C.: Influences on Proxemic Behaviors in Human-Robot Interaction. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2009)Google Scholar
  25. 25.
    Tranberg Hansen, S., Svenstrup, M., Andersen, H.J., Bak, T.: Adaptive Human Aware Navigation Based on Motion Pattern Analysis. In: IEEE International Symposium on Robot and Human Interactive Communication (2009)Google Scholar
  26. 26.
    Yoda, M., Shiota, Y.: The Mobile Robot which Passes a Man. In: IEEE International Workshop on Robot and Human Communication (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christina Lichtenthäler
    • 1
  • Annika Peters
    • 2
  • Sascha Griffiths
    • 3
  • Alexandra Kirsch
    • 4
  1. 1.Institute for Advanced StudyTechnische Universität MünchenGarchingGermany
  2. 2.Applied Informatics GroupBielefeld UniversityBielefeldGermany
  3. 3.Robotics and Embedded SystemsTechnische Universität MünchenGarchingGermany
  4. 4.Department of Computer ScienceTübingen UniversityTübingenGermany

Personalised recommendations